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1 STATISTICS AND THE PRACTICE OF ADAPTIVE MANAGEMENT

J. BRIAN NYBERG

Abstract

As adaptive management becomes more widely
recognized as a foundation element of good land
stewardship, many resource professionals are attempt-
ing to extend its theories and principles into common
practice. They wish to conduct powerful management
experiments, to monitor the outcomes effectively and
efficiently, and to use the resulting data to make reli-
able inferences for future decisions. Most managers,
however, have little formal training in the application
of experimental design and statistics to the problems
that they want to address through adaptive manage-
ment. This chapter sets the stage for the in-depth
discussions of key aspects of statistics in adaptive man-
agement that are presented in subsequent chapters. It
includes a working definition of adaptive manage-
ment, demonstrates the value of the application of
adaptive management to forestry issues, and explains
some of the differences between research studies and
adaptive management techniques.

1.1 Introduction

The concept of adaptive management (Holling [edi-
tor]1978) is steadily gaining wider acceptance in
forestry, especially in Canada and the United States
(e.g., Schmiegelow and Hannon 1993; Bormann et al.
1994; Nyberg and Taylor 1995; Covington and Wag-
ner [technical coordinators] 1996; MacDonald et al.
1997). As a hybrid of scientific research and resource
management, adaptive management blends methods
of investigation and discovery with deliberate manip-
ulations of managed systems. Through observation
and evaluation of the ways that human interventions
affect managed systems, new knowledge is gleaned
about system interactions and productive capacities.
This new knowledge is then applied to future deci-
sions in a cycle of continuous improvement of
policies and field practices.

Adaptive management has somewhat different
goals from research and presents challenges that dif-
fer both in scope and nature from those posed by
typical forest research studies. Consequently, design-
ing and analyzing adaptive management studies
involves more than simply transferring research tech-
niques to management problems. Scientists can play

The terms “manager” and “researcher”
are used here in the following senses:

Managers (or resource managers) are responsible
for making or approving decisions about forest
resource use and conservation. Although there
are exceptions, resource managers in British Co-
lumbia usually have university or technical
institute training to the level of the undergradu-
ate degree or diploma, and are often registered
as professional foresters, agrologists, engineers,
geoscientists, or biologists. Resource managers
are usually employed by government agencies or
private forest companies. To understand the main
ideas in this report, and to be effective in imple-
menting adaptive management, managers should
have a basic academic background in statistics
and subsequent field experience in making or
contributing to complex resource decisions.

Researchers are applied scientists, usually from
government agencies or universities, who are re-
sponsible for conducting scientific studies of
forest ecology and management. Their goals in-
clude both furthering knowledge of forests and
explaining how human actions affect forests. In
addition to their expertise in forestry or related
disciplines, researchers usually have post-graduate
training in statistical methods and experimental
design. To benefit fully from this report, however,
they should also have considerable experience in
conducting forest research.

an important role in adaptive management (Walters
1986), but it is local resource professionals who must
become the “adaptive managers” if the promise of
the concept is to be realized through its application
to a large proportion of forested lands. As part of
their everyday jobs, these managers (see above for
clarification of the term) must be able to implement
or even design studies that produce reliable informa-
tion about issues that concern or challenge them.
This suggests that resource managers might need
to use statistics in such studies. Few field-level
managers, however, have experience in applying
experimental designs and statistical methods, even in




situations suited to the classical statistical techniques
taught in most universities and colleges. Further-
more, the characteristics of some adaptive manage-
ment studies make them unsuitable for many
familiar designs and methods, including analysis of
variance (ANOVA). Alternative approaches such as
Bayesian statistics and meta-analysis can be helpful in
some of these problematic cases, but most resource
managers are not familiar with these approaches.

To be informative and efficient, adaptive manage-
ment projects must be led by people who know what
options for study designs and analyses are available,
and the relative strengths and weaknesses of each.
This is a reasonable if ambitious objective for
resource managers, whose role in adaptive manage-
ment usually includes articulating questions,
selecting among alternative courses of action, and
then implementing those actions. For the researchers
and biometricians who often advise managers on the
details of study designs, sampling, and analysis, a
more comprehensive understanding of the various
statistical techniques is required.

This report has been designed as a guide to statisti-
cal methods appropriate for adaptive management
studies, with material that should interest both man-
agers and researcher scientists. It should serve as an
introduction for some resource managers and a re-
fresher for others on statistical methods, their
strengths and weaknesses, and their suitability for
studies of different types of management problems.
For researchers and biometricians, it should provide
a refresher on classical (familiar) methods, an intro-
duction to less familiar methods, and a discussion of
the typical challenges that will be faced in applying
both to the unfamiliar situations of adaptive manage-
ment. Although all the methods discussed here have
been previously described in other texts and reports,
that material is widely scattered in the literature and
is thus not easily available to forestry practitioners.
This report brings them together under one cover
and deals directly with their application to adaptive
management of forests.

The design of studies and analysis of data—the
themes of this report—are only two components of
the much larger topic of adaptive management. The
following section explains the procedural framework
of adaptive management. For information on other
aspects, including conceptual foundations and im-
plementation, refer to Holling (editor, 1978), Walters
(1986), Lee (1993), Gunderson et al. (1995), and Tay-
lor et al. (1997). In addition, Taylor et al. (1997)

include a comprehensive list of other references.

1.2 Towards a Working Definition

Adaptive management is a systematic process
for continually improving management policies
and practices by learning from the outcomes of
operational programs. Its most effective form—
“active” adaptive management—employs
management programs that are designed to ex-
perimentally compare selected policies or
practices, by evaluating alternative hypotheses
about the system being managed. The key char-
acteristics of adaptive management include:

« acknowledgement of uncertainty about what
policy or practice is “best” for the particular
management issue;

« thoughtful selection of the policies or practices
to be applied;

< careful implementation of a plan of action de-
signed to reveal the critical knowledge;

« monitoring of key response indicators;

« analysis of the outcome in consideration of the
original objectives; and

« incorporation of the results into future deci-
sions.

Increasing use of the term “adaptive management”
by different agencies in different settings (e.g., Lancia
et al. 1996; Namkoong 1997) has spawned various in-
terpretations and misinterpretations of its meaning.
Consequently it is for many little more than a fuzzy
concept. To bring the concept into sharper focus and
to encourage a shared understanding of adaptive
management among resource professionals in British
Columbia, Nyberg and Taylor (1995) proposed the
definition listed in the text above.

This definition suggests that adaptive management
must comprise an organized sequence of activities.
The sequence begins with a thorough analysis of the
problem being faced and then proceeds to the cre-
ation of a management plan that is designed to speed
learning about the system. It is not complete until the
planned management actions have been implement-
ed, measured, and evaluated; and the resulting new
knowledge has been fed back into the decision-
making process to aid in future planning and man-
agement. This sequence of steps can be summarized
as a six-step process: (1) problem assessment, (2) pro-
ject design, (3) implementation, (4) monitoring,

(5) evaluation, and (6) adjustment of future decisions.




The sequence may need to be repeated in a continu-
ing learning cycle if uncertainties remain unresolved
Or new ones appear.

This report deals mainly with the second, fourth,
and fifth steps in the adaptive management process,
namely the design (thoughtful selection) of practices
to be studied, the measurement (monitoring) of re-
sponses, and the evaluation (analysis) of results.

1.3 Experiments in Adaptive Management

Adaptive management can take two different modes:
active and passive (Walters and Holling 1990). A crit-
ical feature of both modes is thorough exploration,
often through a modelling or “gaming” process, of
the potential effects of policies or practices that are
being considered for implementation. In passive ap-
plications only one policy or practice is explored,
whereas in active adaptive management multiple op-
tions are compared and contrasted. In both cases
subsequent management activities reveal, through
monitoring and evaluation of their results, the accu-
racy or completeness of the earlier predictions. These
deliberately designed activities are “experiments” in
the broad sense of the term; that is, deliberate tests or
trials intended to provide information about the re-
sponse of the system of interest.

The notion of experimentation is central to
adaptive management. As Lee (1993, p. 9) puts it,
“Adaptive management...embodies a simple impera-
tive: policies are experiments; learn from them.” In
fact, experimentation is the element that ultimately
distinguishes adaptive management and experimen-
tal research from other approaches to learning about
nature. These other approaches, including the retro-
spective and observational studies described in later
chapters of this report, can contribute helpful knowl-
edge to later adaptive management work, but they
are not themselves adaptive management because
they do not include deliberately planned experimen-
tal manipulations.

Experimentation is considered at some length in
this report, but it is defined here quite broadly com-
pared to many scientists’ concept of a scientific
experiment. For reasons of scale, expense, and oth-
ers, adaptive management experiments will not
always include controls, replication, multiple treat-
ments, randomization, or other features commonly
expected of traditional scientific research. Neverthe-
less, those designing adaptive management
experiments should strive to balance practicality with

rigour so as to provide reliable information in a
timely and cost-efficient manner. As part of the de-
sign process it is also critical to consider the statistical
methods that will be used to analyze the resulting
data. The following chapters describe methods that
can be used to enhance the value of data from studies
that pose some of the design problems listed above.

1.4 Need for Adaptive Management

Uncertainty drives adaptive management (Walters
1986). There would be little need to develop new
policies or methods if managers were dealing with
stable, predictable ecological and social systems. The
outcomes of management programs could be reliably
predicted, and standard practices could be taught to
each generation of young professionals. Adaptive
management and other approaches for dealing with
uncertainty would be of little value.

Resource managers, however, do not live in such a
world (Hilborn 1987). Uncertainties are pervasive in
their work. The major categories of uncertainty that
trouble managers when they consider the future are:
+ natural environmental variability (e.g., weather,

fire, earthquakes, avalanches, volcanoes, stream

flows, genetic composition of species, animal
movements);

+ human impacts on the environment through glo-
bal climate change, new technology, and the grow-
ing population;

+ lack of knowledge about most aspects of the
ecosystems being managed; and

+ variations in social and political goals expressed as
varying budgets, shifting policy directions, and
changing demands for commodities, services, and
aesthetic values from forests.

Given that resource managers and policy makers
are faced with such difficult challenges, what can they
do? Scientific research is one avenue for addressing
the problem of lack of knowledge, but research pro-
grams often take years to organize, carry out, and
report results. Meanwhile, resource management de-
cisions continue to be made and forests continue to
fall and regenerate under human hands. Money and
expertise for research in forestry and other natural
resource disciplines continue to be constrained at
levels far below those needed to address many impor-
tant issues. Furthermore, scientific research is limited
in the types of questions it can answer because many
forestry practices have cumulative effects that are




only apparent at scales of time, space, or both that
are not amenable to investigation through traditional
experimental research. For example, it is impossible
to use classical experimental methods employing
controls and replicated treatments to determine the
effects of forestry on wildlife that use huge areas,
such as caribou, or that are threatened with extinc-
tion or local extirpation, such as spotted owls.

When research, education, or personal experience
fail to provide information needed for difficult deci-
sions, managers typically turn to professional opin-
ion followed by unstructured trial-and-error
management. This approach to learning is often inef-
ficient and unreliable. Unless management alterna-
tives are carefully thought out and attention is paid
to potentially confounding factors such as biases,
random errors, and unmeasured influences of weath-
er, site, or other factors, it is often impossible to say
what really caused any observed response. This can
lead to “myths” being accepted widely due to the
strongly held opinions of one or a few people
—opinions that are later found to be wrong.

For example, poorly conceived and unsuccessful
field trials may have been the genesis of the formerly
strong bias among foresters in central British Colum-
bia against partial cutting in high-elevation stands of
spruce (Picea spp.) and subalpine fir (Abies
lasiocarpa). Until a few years ago, many believed that
partial cutting was unsuitable in any and all spruce-
fir stands. This belief was based largely on reports
that stands that had been partially cut before 1970
had all been subsequently windthrown or infested by
insects or disease. Recent partial cutting trials have
shown, however, that spruce-fir forests can be wind-
firm and healthy (for several years, so far) if the
harvest intensity and site and stand conditions are
appropriate.

In contrast to the basic trial-and-error approach,
adaptive management is a much more organized and
powerful approach to learning from experience.

Its greatest contribution to learning may lie in the
notion of making explicit predictions of the expected
outcomes of management actions, then comparing
actual outcomes to the predictions before adjusting
subsequent actions and the models used to make the
initial predictions. By designing management actions
as experiments stronger inferences can be drawn
from their outcomes, reducing the chance of generat-
ing false notions about forest functions and impacts.
Other potential benefits of adaptive management in-
clude more reliable answers to questions about

effects of forestry over large geographic areas and
long time frames; insight into the causes and process-
es of system responses; shared understanding among
scientists, policy makers, and managers; systematic
resolution of conflicts over policies and practices;
and efficient use of staff and budgets to address clear
objectives (Holling [editor] 1978; Lancia et al. 1996;
Taylor et al. 1997). All of these benefits contribute to
accelerated learning and to the ultimate goal of im-
proved decisions and forest management in future.

As an example of a potential application of adap-
tive management, consider the problem that resource
managers face when they examine the question of
how to protect water quality and downstream fish
habitat in small headwater streams, while still allow-
ing some timber harvesting to take place nearby. This
situation creates a common and difficult problem in
areas of British Columbia where small streams are
numerous, slopes are steep, and timber values are
high. The weight of expert opinion and of evidence
from larger streams suggests that some streamside
vegetation must be retained to provide shade and leaf
litter, prevent sedimentation, and prevent degrada-
tion of bank and channel structure. If large trees are
left standing in a narrow (<30 m) riparian strip after
logging of areas near small streams, however, they
are often blown down by wind, which may cause se-
rious soil disturbance and bank damage as their root
wads pull up. The loss of potential timber revenue in
the fallen trees is exacerbated by the risk of insects
(especially bark beetles) colonizing riparian blow-
down and infesting other stands. Therefore, simply
leaving narrow reserve zones of unlogged timber
along all headwater streams is often not economically
or ecologically appropriate.

Because past experience and scientific research
have not resulted in a reliable approach to managing
riparian areas adjacent to the smallest streams, what
can resource managers and scientists do? If the situa-
tion allowed, the easy answer might be to cease all
logging within, say, 50 m of such streams. But agency
direction and societal demands do not allow such a
“hands off” approach. Resource managers could in-
stead postpone logging in all such areas while waiting
for more intensive research to be done; or they could
simply pick one or more methods and carry on log-
ging while hoping for the best. Neither of these
alternatives is a suitable response in times of restrict-
ed research funding and rising public expectations
for resource stewardship.

By designing management actions as experiments,
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as part of adaptive management, logging could pro-
ceed and at the same time yield important informa-
tion on key indicators of stream conditions, fish and
wildlife habitat, and responses of trees and other veg-
etation. Through modified logging operations man-
agers could apply several alternative treatments, such
as various widths of unharvested reserve zones or dif-
ferent degrees of partial cutting of riparian zones, or
both. Among other benefits, such a program might
reveal the cumulative effects on watershed dynamics
and wildlife habitat of large and widespread treat-
ments—effects that could not be studied in a more
traditional, small-scale research experiment.

Because adaptive management has attributes com-
mon to scientific research and sometimes draws on
research techniques such as controlled experiments,
some may assume that an ambitious program of
adaptive management would obviate the need for re-
search. They would be wrong, for intensive research
is far more suited than adaptive management to
answering some questions. Intensive research can
produce deeper knowledge of selected system
processes, such as mechanisms of physiological re-
sponse in seedlings exposed to varying temperature
and moisture regimes, than could adaptive manage-
ment. It may also be the only approach suitable for
sorting out the interacting effects of a number of fac-
tors on some dependent variable. This in-depth
knowledge may be crucial for building models used
to forecast how the overall system will respond to
management.

Adaptive management is most suited to selecting
amongst alternative courses of action, such as differ-
ent partial cutting treatments that could be applied to
a particular site and stand type. It can also be helpful
for testing the modelled responses of managed sys-
tems against real-world results of management,
across a much wider range of conditions than could
any practical program of intensive research.

In fact, research and adaptive management com-
plement each other, so that the application of both
approaches to a problem will almost certainly lead to
better results than use of either alone. Adaptive man-
agement can reveal management “surprises”;
research can help to explain them.

Adaptive management may be valuable to anyone
facing substantial uncertainty about the best course
of management action, as long as that person has or

can obtain the authority to implement a program
that leads to learning. In cases where political or
other pressures have produced moratoriums or other
forms of management “gridlock,” such authority
may not be easily obtained.! Where management in-
terventions are going to proceed (e.g., when delays
carry unacceptable social or ecological risks), then
much can be gained by treating them as opportuni-
ties to learn. In some cases the only way to discover
how an action will affect a system is to actually try it
(Walters 1986). This is especially true for complex,
large-scale systems and effects of cumulative actions.
Although the emphasis in this report and most
other literature is the application of adaptive man-
agement to natural resources, the approach is equally
valuable for other fields. Adaptive management
shares much of its theoretical basis with the concepts
of continuous improvement in business (Deming
1986; Walton 1986), adaptive control process theory
in engineering, and operations research and man-
agement (McLain and Lee 1996). Wherever an
organized, experimental approach to difficult man-

agement questions is needed, adaptive management
could be of help.

1.5 Role of Statistics

In forest management, data and mathematical analy-
ses are central to management decision-making, and
statistical methods play several important roles.
Modern forestry is based to a great extent on statisti-
cal descriptions of the characteristics of forests and
forest products, such as timber inventories; and on
inferences about the expected future conditions of
forests and habitat, including growth and yield rela-
tions. Statistics are also crucial in understanding how
forest resources respond to human and natural per-
turbations, because they allow us to distinguish
“treatment” effects from random and sampling
errors.

In adaptive management, statistical methods also
play a critical role. Adaptive managers will often want
to measure the initial state of the systems they ad-
minister, and they will usually need to monitor
trends over time that show the system’s responses
to management policies or practices. In evaluating
outcomes, they will want to draw inferences about
the causes of any changes that are detected in the

It can be argued that adaptive management is the best way to resolve gridlock based on mistrust of resource managers by public groups or
other stakeholders. The same is true where the impasse arises from competing ideas and values, fear of consequences, or other concerns

rooted in lack of knowledge of the forest’s responses to management.




system to decide how and when to adjust actions in
the future or at comparable sites. In all of these appli-
cations statistical techniques can provide important
insights into both qualitative and quantitative mea-
surements. Statistical analyses allow managers to
discern small but important differences in data sets,
and to distinguish patterns of correlation and inter-
action from background variation and sampling
errors.

Careful design of management experiments or op-
erational trials is often the first step towards gaining
data from which reliable inferences can be drawn.
Whenever possible, adaptive management studies
should include experimental controls, unbiased sam-
pling and allocation of treatments, and replication of
treatments. However, it is important to recognize
that the operational scale and setting of adaptive
management studies may constrain the level of statis-
tical rigour that can be achieved. It may be
impossible, for example, to find multiple areas that
are sufficiently homogeneous to serve as replicates of
operational-scale treatments. In other cases, it may
not be feasible to meet some of the critical assump-
tions of the classical methods of statistical analysis,
including random allocation of treatments, homo-
geneity of variance, and independence of sample
variances. Perhaps even more significant is the fact
that “frequentist” statistical methods such as
ANOVA and regression analysis are not designed to
answer common management questions such as
“What is the probability of a 50% increase in wind-
throw after partial cutting?”

As a result, classical methods will be useful in some
adaptive management studies but not in others.
When classical methods are not appropriate, a pro-
posed study may still be worthwhile if alternative
types of analyses can reveal important insights from
the data.

1.6 Structure of the Report

The next eight chapters provide an overview of prin-
ciples and methods for a wide range of approaches to
experimentation and data analysis in operational
forestry settings. Beginning with a review of basic
concepts of experimental design and classical meth-
ods of statistical analysis in Chapter 2, the report then
covers other common approaches to studying natural
systems (“Studies of Uncontrolled Events” and “Ret-
rospective Studies” in Chapters 3 and 4, respectively).
Chapter 5 (“Measurements and Estimates”) and

Chapter 6 (“Errors of Inference”) discuss common
mistakes in interpretation of data and statistical re-
sults, and suggest ways to avoid them. Chapters 7 and
8 give an overview of Bayesian statistics and decision
analysis, both of which are unfamiliar to many re-
source managers but which have great potential value
in adaptive management. Chapter 9 synthesizes the
methods discussed in this report and presents a sim-
plified user’s guide to the value of different types of
information in adaptive management.

Each of the next seven chapters explains what a
statistical method can do for a project leader, when it
should be used, and what its limitations are. The au-
thors have limited the use of formulas, mathematical
notation, and statistical jargon as much as possible,
without making the information superficial. Never-
theless, some of the concepts and methods discussed
will be unfamiliar and challenging, and some sections
may have to be read several times. Most of the tech-
nical terms are defined in the glossary at the back of
the report. Since this handbook is not comprehensive
we encourage readers wanting more detailed infor-
mation to consult the references listed at the end of
each chapter. Most importantly, project leaders
should consult throughout their projects with biome-
tricians or experienced researchers to ensure that
powerful and cost-efficient methods are used.

Finally, we recognize that there are approaches to
generating and analyzing data that this report does
not cover. For example, some readers will already be
familiar with the methods referred to as “combining
information” (Draper et al. 1992) and “meta-analy-
sis” (Fernandez-Duque and Valeggia 1994). Because
the focus is on forestry, there is little attention to the
quantitative methods for fish and wildlife population
analysis that are treated in many adaptive manage-
ment papers (e.g., Walters 1986). Readers should also
remember that this report addresses only one of the
many issues that need to be considered if adaptive
management is to succeed widely. Greater challenges
may lie in social and institutional aspects of imple-
menting adaptive management, such as the risk
aversion of some managers (Walters and Holling
1990), inadequate institutional structures and
stakeholder participation (McLain and Lee 1996), in-
complete or ineffective implementation of the study
plan, (C.J. Walters, pers. comm., 1995) uncertain or
inadequate funding for monitoring and analyses
(McLain and Lee 1996), lack of commitment to
reporting (Taylor et al. 1997), and institutional
“memory loss” about what has been learned




(Hilborn 1992). These problems too need careful
consideration, innovative thinking, and personal
commitment to shared learning.

With the stage now set, the remainder of this re-
port presents ideas and methods that should be
valuable to anyone who uses or needs to use quanti-
tative analyses in forestry. Throughout, the focus is
on designing more powerful and informative man-
agement experiments. There is meat, however, for
both statisticians and experienced researchers. We
hope that the ideas in the following chapters will con-
tribute to more effective, efficient learning in many
different situations.
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2 DESIGN OF EXPERIMENTS

AMANDA F. LINNELL NEMEC

Abstract

Experimentation is essential for making well-informed
decisions about the management of complex forest
ecosystems. Although experiments in forest manage-
ment are generally more complicated than the typical
research experiment, many issues, such as protection
against bias, repeatability of results, efficient use of
resources, and quantification of uncertainty, are the
same. Therefore, managers, as well as researchers, can
benefit from a good understanding of the principles of
sound experimental design. This chapter reviews some
fundamental concepts of experimental design and the
assumptions that provide a basis for classical statistical
inference. The importance of clear objectives and the
need for replication, randomization, and blocking are
emphasized. Practical limitations of the classical ap-
proach, as it applies to the design of adaptive
management experiments, are discussed briefly.

2.1 Introduction

Successful management of our forests is a dynamic
process in which current programs are continually
monitored and adapted as new information becomes
available and policies change. Because the outcome
of decisions is always uncertain, managers often ex-
periment with new strategies to help determine the
best course of action. Although such tests do not
necessarily conform to the standards of a strictly con-
trolled research experiment, many issues, such as
elimination of bias, repeatability of results, efficient
use of resources, and quantification of uncertainty,
are the same. For this reason, managers, as well as re-
searchers, can benefit from a good understanding of
the principles of sound experimental design. This
chapter reviews the theory of classical experimental
design and the assumptions that provide a basis for
statistical inference from experimental data. Applica-
tion of traditional theory to the design of adaptive
management experiments is considered.

The literature on the design of experiments is vast.
Classical books, such as The Design of Experiments by
Fisher (1935), The Design and Analysis of Experiments
by Kempthorne (1952), Experimental Designs by
Cochran and Cox (1957), and Planning of Experiments
by Cox (1958), remain valuable sources of guidance

and are recommended reading. Since the early work
of Fisher, the number of books and papers on experi-
mental design has exploded, as indicated by the list of
more than 200 references assembled over 10 years ago
by Steinberg and Hunter (1984). During the last 10
years, improvements in computer technology have
encouraged statisticians to improve and expand their
efforts even more (e.g., refer to Atkinson 1982, 1988,
1996; Bates et al. 1996), so the trend persists. Unfortu-
nately, much of the recent work is inaccessible to
managers because the language is overly technical
and difficult to understand—a concern expressed by
Pike (1984) and several others who discuss the review
by Steinberg and Hunter (1984). Moreover, there is
usually a long delay before new methods are accepted
and incorporated into popular statistical software
packages. Therefore, readers seeking practical infor-
mation on the design and analysis of experiments are
advised to consult general textbooks (e.g., John 1971;
Box et al. 1978; Steel and Torrie 1980; Mead 1988;
Montgomery 1991; Milliken and Johnson 1989, 1992)
and papers written specifically for managers or ap-
plied scientists (e.g., Stafford 1985; Penner 1989).

2.2 Definitions

An experiment is the manipulation of a population
or system (e.g., partial cutting of a forested area) as a
means of gathering information. The source of ex-
perimental material (e.g., trees, vegetation, wildlife)
is called the experimental population. In an ideal ex-
periment, the experimental population is the same as
the target population, or forest ecosystem, to which
the results are eventually to be applied. In practice,
the two populations necessarily differ in time and
perhaps space or scale as well.

In a typical research experiment, the experimental
population might consist of: the trees in a nursery; a
collection of relatively small plots of land, which are
distributed over one or more geographic areas; or
any other set of entities. Each tree, plot, or entity is
an experimental unit that receives one of several
treatments (e.g., levels of fertilizer, partial cutting or
no cutting). These units are generally too large to
measure in their entirety and are subdivided into a
set of smaller sampling units (e.g., branches or
subplots) from which a suitable subset is selected for




measurement. To monitor trends or other effects of
time, measurements are repeated at suitable intervals
over a period of months or years.

The results of research experiments are of limited
value for making inferences about the effects of treat-
ments or actions applied to management units. Man-
agement units (e.g., a forest stand or polygon, a
mapsheet, or a timber supply area) are areas of forest
that are convenient for administration or cost-
effective operations, and therefore are considerably
larger than research plots. The impact of disturb-
ances created by large-scale operations in these units
cannot, in general, be deduced from small research
plots, where effects such as fragmentation, soil ero-
sion, and changes in vegetation or water quality
might not be evident. Proponents of adaptive man-
agement (e.g., Walters 1986; Walters and Holling
1990; Taylor et al. 1997) argue that successful man-
agement of complex biological systems requires full-
scale testing. These experiments, which are known as
adaptive management experiments, are used to test
entire management plans, with the management unit
serving as the experimental unit as illustrated in Fig-
ure 2.1. In an adaptive management experiment, one
or more systems are monitored regularly over time
and decisions about treatments or other interven-
tions are made as the experiment progresses. Because
management units are large and complex, they must
be broken down into suitable sampling units for ob-
servation and evaluation. In this respect, adaptive
management experiments resemble research experi-
ments, although the number and type of sampling
units might differ.

Forest ecosystem

Management unit

%

Experimental unit

FIGURE 2.1  Relationship between the study units in a
typical research experiment (left) and an
adaptive management experiment (right).

2.3 Objectives

The first requirement in any experiment is a clear
statement of the goals. Paraphrasing Box et al. (1978,
p- 15), the purpose of an experiment must be clear
and agreed upon by all interested parties; there must
be agreement on what criteria will determine whether
the objectives have been accomplished; and, finally,
in the event that the objectives change during the
course of the experiment, an arrangement must be
made by which all interested parties are informed of
the change, and agreement on the revisions can be
reached. The importance of these points cannot be
overemphasized. Without clear objectives, the out-
come of an experiment is predictable: ambiguous
results and wasted time, money, and valuable (possi-
bly irreplaceable) resources. Unnecessary waste is
always unacceptable. However, when large manage-
ment units are involved, the costs can be devastating.

Defining the objectives of an experiment requires
careful consideration of the components that make
up the system under study, the forces that drive the
system, and the best means of extracting information
about both. In a small-scale research experiment, at-
tention might reasonably be restricted to relatively
simple questions—for instance, how does tree
growth differ under various controlled conditions?
The objectives of adaptive management experiments
typically concern more complicated issues—such as,
how is “biodiversity” affected by forest practices?

In both cases, general scientific concepts (e.g., tree
growth and biodiversity) must be stated in terms of
well-defined, measurable quantities (e.g., height or
diameter increment, number of species). These
quantities provide a concrete basis for planning
experiments and for analyzing the results.

The objectives of an experiment are often posed as
hypotheses to be tested or parameters to be estimat-
ed. Special care must be taken to ensure that the
hypotheses are sensible and that the parameters are
useful for making decisions. In classical hypothesis
testing, a so-called null hypothesis is retained unless
there is convincing evidence to the contrary. Based
on the outcome of the experiment, the null hypothe-
sis is either retained or rejected in favour of a specific
alternative hypothesis. (See Anderson, this volume,
Chap. 6, for a discussion of the associated errors of
inference.) The null and alternative hypotheses
should be defined so that both outcomes (i.e., accep-
tance or rejection of the null hypothesis) represent
reasonable and informative conclusions that would
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justify the cost of the experiment. Implausible null
hypotheses should be rejected at the outset and re-
placed with something more relevant. For instance,
no sensible person would ever accept the hypothesis
that partial cutting has no impact on forest ecosys-
tems; a more reasonable hypothesis is that partial
cutting does not reduce a key parameter (e.g., the
number of bird species) below some critical value.
The alternative hypothesis is equally, if not more, im-
portant than the null hypothesis. An experiment that
is designed to detect one type of departure from a
null hypothesis might be completely ineffective in de-
tecting other types of deviations. For example, an
experiment to evaluate short-term impacts of partial
cutting will generally provide little information about
long-term effects.

2.4 Principles of Experimental Design

An experimental design is a detailed plan describing
all aspects of an experiment (see Bergerud 1989b).
Most experimental designs include a sampling de-
sign, which describes the nature of the sampling
units, the number of sampling units, the method of
selection, and the variables to be measured. The ex-
perimental design depends on the purpose of the
experiment and thus “the entire reasoning process by
which the experimenter really hopes to link the facts
he wishes to learn from the experiment with those of
which he is already reasonably certain” (Mandel 1964,
p- 2). Experimental designs are characterized by three
main components: (1) the factors and factor levels to
be investigated, (2) the amount and type of replica-
tion, and (3) the method of randomization, including
any blocking. Each of these elements should be con-
sidered carefully to assure that all data pertaining to
the objectives are collected (and can be analyzed) and
that the data be collected in the most efficient way
(i.e., optimum results for a minimum cost).

2.4.1 Experimental factors

Experimental factor means any treatment' or variable
(e.g., harvesting method, species composition, age)
that is controlled in an experiment, either by physi-
cally applying a treatment to an experimental unit or
by deliberately selecting a unit with a particular char-
acteristic. A covariate may be any other variable that
is measured but not influenced by the experiment.
Experiments are distinguished from observational

studies by the investigator’s ability to control the
experimental conditions. (Refer to Eberhardt and
Thomas 1991, and Schwarz, this volume, Chap. 3, for
a discussion of the differences among experiments,
observational studies, and various other types of
study.) This control helps justify inferences about
cause and effect. For example, to determine the best
method of partial cutting to minimize the impact on
wildlife, various levels of volume removal might be
tested. This approach would probably be more infor-
mative than simply measuring volume in existing
partial cuts and observing a correlation with number
of animals. Correlation proves little about cause and
effect because both variables might be correlated with
a third variable (e.g., elevation). An interesting dis-
cussion of inferences about cause and effect can be
found in Holland (1986).

Usually many types and levels of factors might be
investigated in an experiment. These must be selected
carefully to meet the study objectives. A simple ex-
periment might have only one relevant factor (e.g.,
method of logging), which has relatively few prede-
termined values or levels (e.g., clearcutting, partial
cutting, or no cutting). An experimental design that
involves only one such factor is called a one-way de-
sign with a fixed factor (effect). A design with two
such factors is called a two-way design, a design with
three factors is a three-way design, and so on. In
some applications, the factor levels are not known
ahead of time (although the number of levels is fixed)
but are randomly selected from a well-defined popu-
lation of levels. Such factors are known as random
factors (effects). For instance, a manager might want
to compare bird diversities in a random sample of 20
white pine stands from a particular site series. Here
stand is a random factor with 20 levels. Factors with a
continuum of possible values (e.g., age, diameter),
which commonly occur in regression designs, are
called continuous factors or simply variables.

Two or more factors can occur in various combi-
nations. If an experiment includes every level of one
factor in combination with every level of the other
factor(s) then the factors are crossed and the design is
called a factorial design. The advantages of factorial
designs over designs that vary one factor at a time are
twofold: efficient replication and estimates of interac-
tions. In some cases, the set of possible levels of one
factor depends on the level of another, in which case
the former is said to be nested in, rather than crossed

1 The term “treatment” will hereafter refer to a particular set of conditions, an action, or an entire management strategy.
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with, the latter. The (relative) moisture level of a
stand might, for example, be classified differently de-
pending on the subzone in which the stand is located.
Most well-designed experiments include a control or
standard by which the effectiveness or impact of
treatments can be judged. In a one-way design, the
control might be one level of the treatment (e.g.,
clearcut, partial cut, and an uncut control), while a
two-way factorial design might include a separate
control (e.g., clearcut with and without mechanical
site preparation, partial cutting with and without site
preparation, and an uncut control with no site prepa-
ration). Bergerud (1989a) describes the analysis of the
latter type of design.

The overall effect of a factor—that is, the average
effect for all levels of the other factors—is called its
main effect. If the effect of one factor depends on the
level of one or more other factors then there is an in-
teraction among the factors. A certain amount of
fertilizer might, for example, increase the height of
one species but have a smaller, or even opposite, ef-
fect on another species; in this case, there is an
interaction between species and fertilizer. Factorial
designs allow an investigator to study many interac-
tions in the same experiment. However, if some
combinations are omitted for any reason then certain
main effects or interactions may be inseparable from,
or confounded with, others. Thus the magnitude of
confounded effects cannot be estimated. In such cir-
cumstances, the experimenter must be sure that the
confounded effects are of little or no interest, or can
be assumed to be negligible.

2.4.2 Replication
Replication, a standard means of validating scientific
findings, is a cornerstone of the theory of experimen-
tal design as laid down by Fisher (1935). Experimental
conditions are replicated when the same combina-
tion of factors occurs in more than one experimental
unit. This replication provides an estimate of the ex-
perimental error, which is any variation that cannot
be explained by the experimental factors (e.g., sam-
pling or measurement error, and natural variation
among the experimental units). In the absence of
replication, there is no way, without appealing to
nonstatistical arguments, to assess the importance
of observed differences between the experimental
units.

The type of replication should be consistent with
the objectives. The experimental units should, there-
fore, be as similar as possible to the elements of the

target population. For instance, test sites should be
selected from the same geographic area as the target
population and treatment plots should be compara-
ble in type and size to management units. Experi-
mentation at a single site limits the applicability of
results to a small geographic region, while failure to
identify the appropriate unit of replication results in
pseudoreplication (Hurlbert 1984; Bergerud 1988,
1991) and possibly erroneous conclusions about the
nature of an effect.

In addition to selecting the size and type of repli-
cate, the optimum number of experimental units
(and sampling units) must be determined. Sample
sizes should be large enough that definitive conclu-
sions about the size of an effect or the validity of a
hypothesis can be made (i.e., parameter estimates
must be sufficiently precise and tests of hypotheses
must be decisive). Simple sample size calculations
provide an estimate of the minimum number of
replicates and sampling units needed to meet this
goal (see Nemec 1991; Bergerud 1992). If the required
sample size is unrealistic, because of the high cost of
treatment or sampling, then the objectives and design
of the experiment should be re-evaluated to deter-
mine whether an observational or retrospective study
(see Schwarz, this volume, Chap. 3, and Smith, this
volume, Chap. 4) might be more cost effective.

2.4.3 Randomization and blocking

Randomization occurs when treatments are random-
ly assigned to the experimental units. Like replica-
tion, randomization is an essential element of

good design. It helps minimize the risk of bias by
ensuring that all unmeasured factors (e.g., soil mois-
ture, nutrients, prevalence of root disease) are more
or less evenly distributed among the treatments, or
“randomized out” of the experiment. Thus each
treatment is expected to be assigned to an approxi-
mately equal number of wet and dry sites, nutrient-
rich and nutrient-poor sites, sites with low and high
levels of root disease, and so on.

Random assignment of treatments can be
accomplished in a variety of ways. In a completely
randomized design, treatments are assigned by
picking units at random from the experimental pop-
ulation. For instance, if there were two treatments
and 20 experimental units (10 replicates per treat-
ment) then the units might be numbered from 1 to
20, with 10 numbers picked at random to determine
which units receive the first treatment and the
remainder receiving the second. Sometimes
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experimental units have a variety of origins (e.g., dif-
ferent geographic regions) and therefore exhibit
considerable inherent variability. In such situations, a
substantial reduction in the experimental error can
often be achieved by separating the units into homo-
geneous groups, or blocks, according to origin, or
some other factor. Treatments are then randomly as-
signed within each block. This is a form of restricted
randomization because each treatment is constrained
to occur a fixed number of times in each block. In a
completely randomized design, the randomization is
unrestricted, which might result in a very uneven dis-
tribution of origins or other attributes among the
treatment groups. Many other designs with some
form of restricted randomization exist, including
split-plot designs (which impose constraints on the
assignment of treatments to two types of experimen-
tal units: main plots and subplots), Latin squares,
and lattice designs. Refer to Cochran and Cox (1957)
and Anderson and McLean (1974) for more informa-
tion about these and other designs.

Random sampling is another way of avoiding bias
when factors, such as species or age, cannot be as-
signed. Experimental units should be randomly
chosen from the experimental population and sam-
pling units should likewise be selected at random
from the experimental units. Random samples, un-
like haphazard samples or judgement samples
(samples judged to be “representative” by an expert
who makes the selection), have known statistical
properties. This allows the precision of a result to be
estimated from the sample—something that is not
possible with non-random sampling. For further dis-
cussion of the topic, see Deming (1960, pp. 30-33)
and Schwarz (this volume, Chap. 3).

Randomization and random sampling are closely
related ideas leading, in many cases, to the same
mathematical models and equivalent data analyses
(Feinberg and Tanur 1987; Smith and Sugden 1988).
For instance, randomization with blocking is analo-
gous to stratified random sampling, and split-plot
designs are comparable to cluster sampling. Despite
the parallels, randomization is traditionally discussed
in connection with experimental design, while issues
relating to sampling design (e.g., type and number of
sampling units, method of sampling) are reserved for
discussions of observational studies. For more infor-
mation on the latter subject refer to Schwarz (this
volume, Chap. 3).

Randomization is one of the simplest ideals to
achieve in both small- and large-scale experiments.

The process of randomly assigning treatments to
units is the same regardless of the size or nature of
the unit—tree, research plot, or stand. All that is re-
quired is a list of units and a random number
generator. Despite its importance in eliminating bias
and its ease of application, randomization is some-
times resisted on grounds that “environmental” or
“logistical” constraints prohibit its use, or that it is
“impractical.” Although it might be tempting to as-
sign certain treatments (or controls) to stands that
are most difficult to harvest, or to stands that are
most visible from neighbouring communities, such
practices are likely to influence the outcome and thus
invalidate any inferences about cause and effect (refer
to Section 2.5). If randomization of treatments is re-
ally not practical or possible then the whole purpose
of the experiment should be reconsidered.

Random selection of experimental units and sam-
pling units can be more difficult to achieve than
random assignment of treatments. For instance, how
can a random sample of 25 trees be selected from a
stand without compiling a complete list of trees and
their locations? Likewise, how can a random sample
of needles be selected from a tree? Various ingenious
solutions have been proposed, such as the use of ran-
dom bearings and random distances to locate sample
trees and randomized-branch sampling to sample in-
dividual trees (Gregoire et al. 1995). Thus both
randomization and random sampling (or a close ap-
proximation) are feasible in most experiments.

2.4.4 Other considerations

Replication, randomization, and blocking are usually
recognized as the most important principles of good
design. These have been expanded over the years (see
Atkinson 1982, 1988; Federer 1984; Steinberg and
Hunter 1984) to include such other features as or-
thogonality (which implies that all main effects and
interactions of the experimental factors can be esti-
mated), balance (equal sample sizes), efficiency
(minimum cost), and, in recent years, optimality
(minimum variance). Efficiency and optimality,
which help ensure maximum precision for a fixed
sample size, are likely to remain important as long as
money and resources are scarce. As technology con-
tinues to improve, the emphasis on orthogonality
and other computational issues is expected to dimin-
ish. Mead (1990) has, for example, suggested that the
need for orthogonality, which excludes a large class
of potentially useful designs, primarily because of nu-
merical complexity, should be re-evaluated in the
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light of present computing power. As the role of ex-
periments continues to evolve, new criteria and
principles will undoubtedly emerge (see Section 2.6).
Successful experimentation depends on more than
the choice of factors and the use of appropriate ran-
domization, replication, and blocking. Many prac-
tical details must also be considered. All pertinent
measurements of the experimental (sampling) units
must be identified, appropriate field procedures and
data collection forms must be developed, and provi-
sion must be made for adequate supervision of the
data collection. In large-scale studies, coordination
and optimization of procedures are especially impor-
tant. For a checklist of these and other aspects of the
planning and execution of a study, refer to Sit (1993).

2.5 Statistical Inference for Experiments

Statistical inference and experimental design are
closely linked. Design determines the kind of statisti-
cal inferences that are possible, while consideration
of the proposed method of analysis almost always in-
fluences design (e.g., sample-size calculations depend
on the hypothesis testing procedure or estimation
method that will be used). In fact, failure to contem-
plate how the data will be analyzed invariably results
in a poor design.

All statistical inferences are based on a set of as-
sumptions that links the data to the experimental
population via the design. Thus inferences are neces-
sarily confined to the experimental population.
Because the relationship between experimental and
target populations is unknown, extrapolation to the
latter is more or less conjecture and should be viewed
with caution, particularly when the gap between
experimental and target populations is large. The
validity of statistical inference in an experimental set-
ting is discussed more fully by Deming (1953, 1975),
Box et al. (1978, Chap. 1), and Hahn and Meeker
(1993).

Analysis of variance (ANOVA) methods are com-
monly applied to experimental data, so much so that
discussions of experimental design are often more
about ANOVA than fundamental issues of design.
Both are concerned with sources of variation and the
estimation of experimental error. The basic premise
of ANOVA is that the observed variability in experi-
mental data can be attributed to a finite number of
identifiable sources, including factors under the con-
trol of the investigator, uncontrolled experimental
errors, and various interactions. A simple, one-way,

fixed-effects design has a single experimental factor
(e.g., harvesting method) and a single source of
experimental error (e.g., inherent variability in the
stands that are treated). A split-plot design has two
sources of experimental error: variation among main
plots and variation among subplots. Proper data
analysis is possible only when the identification and
classification of the factors by type (e.g., fixed or ran-
dom, nested or crossed) is consistent with the design.
Any restrictions on the randomization, which are im-
posed by design (e.g., blocking), must be duly noted
by the inclusion of appropriate error terms (a theme
emphasized by Anderson and McLean 1974).

The purpose of an ANOVA is to make inferences
about effects attributable to experimental factors
(refer to Sit 1995 for more information), while taking
into account uncertainty caused by errors. To do this
the data are assumed to be generated by a probability
model that includes all the relevant effects and has
three key assumptions: (1) selection of the experi-
mental units and assignment of treatments are
independent of the response variables of interest,

(2) all random effects and experimental errors are
mutually independent, and (3) random effects and
experimental errors attributable to a common source
are identically distributed as (normal) random vari-
ables with a mean of zero. The first assumption is
often not stated explicitly but is crucial for making
causal inferences (refer to Holland 1986 for a mathe-
matical explanation of this fact). If the variables of
interest somehow influence, either directly or indi-
rectly, which experimental units receive a particular
treatment, then the potential for bias is clear (e.g., as-
signment of treatment on the basis on slope, aspect,
density of trees, or any other variable that might af-
fect tree height precludes inferences about the effect
of treatment on height). Randomization and random
sampling are the only effective means of eliminating
this source of bias.

Independence among errors and random effects is
another important assumption of ANOVA. There are
two common departures from this condition: tempo-
ral and spatial autocorrelation. In forestry studies,
correlation among repeated measurements of the
same experimental unit (temporal autocorrelation)
and correlation among units in close proximity (spa-
tial autocorrelation) are likely occurrences. The
possibility of autocorrelation can sometimes be
avoided by an appropriate choice of design (e.g., by
ensuring that the sampling units are far apart) or it
can be taken into account by adopting a suitable
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spatial or time-series probability model (refer to
Nemec 1996)

Formal statistical inference based on ANOVA
methods (e.g., F-tests, computation of confidence in-
tervals) requires knowledge of the distributional
properties of the random effects and experimental er-
rors. The usual assumption is that all random effects
or experimental errors associated with a specific
source have the same distribution, which is generally
assumed to be normal with a mean of zero and a ho-
mogeneous variance. The impact of departures from
these assumptions varies depending on the type of
departure and on the sample size. Minor deviations
from normality have little impact on inferences
about fixed effects, especially when the sample sizes
are large. Tests for random effects tend to be more
seriously affected. Heterogeneous error variances can
distort P-values, although the degree of distortion
depends on the range of variances. Serious depar-
tures from normality or homogeneity can sometimes
be identified and corrected; some suggestions are
outlined by Snedecor and Cochran (1967, Chap. 11).
Alternatively, robust or nonparametric methods can
be used. Failure to adjust for lack of independence
(autocorrelation) tends to exaggerate effects when
the correlation is positive, or understate effects when
the correlation is negative.

2.6 Advantages of Classical Experimental Design

The “controlled experiment is in common wisdom
the most decisive of tests” (Susser 1994, p. 831). By
controlling both the levels and combinations of fac-
tors applied to the experimental material, the
investigator can make much stronger inferences
about causal relationships and interactions than
would otherwise be possible. Replication, randomiza-
tion, and blocking serve three important purposes:
elimination of systematic error (i.e., bias), quantifica-
tion of uncertainty, and reduction of uncontrolled
experimental error. Because these three goals are rel-
evant to any scientific investigation, many parallels
can be found between experimental design and the
design of a survey or an observational study (see
Schwarz, this volume, Chap. 3). Two examples men-
tioned previously are randomization and random
sampling to eliminate bias, and blocking and stratifi-
cation to improve precision; refer to Feinberg and
Tanur (1987) and Smith and Sugden (1988) for

a discussion of these and other similarities and
differences.

Classical experimental design also provides a
framework for ANOVA, analysis of covariance,
regression methods, and other types of statistical
analysis. This framework allows investigators to esti-
mate components of variation, and, beyond that, to
make formal statistical inferences about their signifi-
cance. Hypothesis testing has been emphasized in the
past but confidence intervals, which are often more
informative because they provide an estimate of the
size of an effect, are just as easily constructed. The
usefulness of ANOVA—both the underlying models
and the components-of-variation approach—cannot
be disputed. The models are very versatile. Simple
forms of temporal or spatial autocorrelation can, for
instance, be accommodated by repeated-measures or
split-plot models. However, the usual ANOVA as-
sumptions (e.g., normality) are untenable in some
situations (e.g., if the data are discrete). This is a limi-
tation of the probability model, not of the classical
approach to design. Although ANOVA models and
experimental design are closely linked, the two
should not be equated. Other models (e.g., log-linear
models for categorial data, nonparametric models)
and methods of analysis (e.g., regression analysis)
might be applicable when ANOVA models are not.
In addition, new models and methods continue to be
developed, many of them for classical designs.

2.7 Experimental Design for Adaptive Management

An experiment is conducted to answer one or more
questions. In a research setting, the questions tend to
be relatively simple. Does a new method of storage
promote better short-term survival of seedlings than
an established method? Is there any difference in the
growth of two species of seedlings, 5 years after
planting? Are planted trees more susceptible to root
disease than naturally regenerated trees? The ques-
tions confronting managers are likely to be
considerably more challenging, involving such com-
plex issues as maximization of sustainable yield,
avoidance of unnecessary risk, economic efficiency,
and economic stability (see Walters 1986, Chap. 2).
To limit these problems, thereby making them more
amenable to solution by experimentation, a manager
must: (1) identify key factors for analysis: what are
the main factors that distinguish strategies? which
factors can be controlled? (2) consider timing: over
what time period and how frequently should the sys-
tem be monitored? (3) consider spatial scale: what are
the management units? and (4) identify quantities of
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interest: how are quality of results, costs, and benefits
measured? For practical advice on “bounding
problems for analysis,” refer to Chapter 1 of

Walters (1986).

After the objectives have been determined, the
next step is to define the target population and to
take an inventory of the management units available
for experimentation. If the target population is a
unique ecosystem managed as a single unit (e.g., a
particular area of old-growth forest) then replication
is inapplicable because there can be only one re-
sponse to a particular management strategy. On the
other hand, when groups of units are sufficiently
similar that they can be managed according to a
common strategy (e.g., stands with comparable ages
and species compositions), replication is desirable to
determine the range of possible responses to
that strategy. However, even when replica-
tion is theoretically possible, it might not be
practical because of the high costs of large-
scale experiments, time constraints, or
limited resources.

Replication is a decisive issue. Its
effect on the design and analysis of adaptive
management experiments is illustrated in
Figure 2.2. If replication of a treatment or
management strategy is possible then classi-
cal methods (Sections 2.4 and 2.5) can be
useful. Moreover, even if treatment replica-
tion is impossible or impractical, adherence
to traditional principles can help ensure that
the sampling design is sound. Thus, ran-
domization, replication, and blocking

is considerably more complicated. Responses of indi-
vidual systems and the overall response of systems
managed under the same plan (i.e., replicates) must
be considered (see Walters 1986, Chap. 10). This
problem has no simple solution because the link be-
tween classical methods (e.g., ANOVA) for the analy-
sis of replicated designs and decision analysis for
nonreplicated management strategies is not well de-
veloped. Meta-analysis (see Mann 1990 for an inter-
esting and nontechnical discussion of meta-analysis)
or alternative methods for integrating the results
from several experiments might be useful in such sit-
uations, although a piece-meal analysis of large,
complex, and dynamic systems has obvious draw-
backs.

Objectives

Y

Target
population

Y

Experimental
population

Y

ves Replication No

possible?

\

/ \/

(random sampling and stratification) are ef-
fective means of avoiding bias and reducing
error in both replicated and non-replicated
experiments.

Adaptive management requires a suitable
model for predicting transitions of a system
from one state to another, and a set of rules
for deciding the best action at any given
time. In the case of non-replicated experi-
ments (right side of Figure 2.2), various ana-
lytical methods have been developed (see
Walters 1986, Chap. 4—9 ). These methods
are based on the theory of stochastic
processes, Bayesian statistics (Bergerud and
Reed, this volume, Chap. 7), and decision
theory (Peterman and Peters, this volume,
Chap. 8). When data arise from replicated
systems (left side of Figure 2.2), the problem

Experimental units:
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Y
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FIGURE 2.2 Design and analysis of an adaptive management experiment.
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2.8 Summary

Sound experimental design is essential for adaptive
management of valuable forest resources. Adherence
to the principles of randomization, replication, and
blocking helps to ensure that an experiment meets
the basic requirements for success (Cox 1958): ab-
sence of systematic error, precision, validity for an
appropriate range of conditions, simplicity, and an
estimate of uncertainty. Failure to consider these is-
sues leads to unnecessary waste and, in the worst
case, bad decisions resulting in serious damage to
sensitive forest ecosystems. Development and adop-
tion of adaptive methods for carrying out large-scale
experiments has been slow, due partly to the barriers
created by excessively technical language, a lack of
analytical tools, and a limited number of successful
applications to serve as models. Overcoming these
obstacles by continuing efforts to educate and to in-
form (e.g., Biometrics Information series published
by Research Branch, B.C. Ministry of Forests) can
only help to improve matters in the future.
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3 STUDIES OF UNCONTROLLED EVENTS

CARL J. SCHWARZ

Abstract

The rationale for carefully planned experiments is well
documented. A well-designed experiment will have a
high probability of detecting important, biologically
meaningful differences among the experimental
groups. Causal relationships can be inferred because
the experimental factors have been manipulated and
randomly assigned.

In many cases, controlled experiments are impracti-
cal or too expensive, and surveys of existing ecological
populations are performed, even though the resulting
inferences will be weaker than those obtained through
controlled experimentation. Consequently, nonexperi-
mental studies, or passive adaptive management, is
primarily a tool for generating hypotheses to be tested
by careful experimentation.

Despite the weaker inferences from nonexperimen-
tal studies, the same attention must be paid to the
proper design of a survey so that the conclusions are
not tainted by inadvertent biases. This paper will re-
view several of the standard nonexperimental studies
by presenting an overview of the study protocol, the
conclusions that can be reached, and the potential
problems that can occur.

3.1 Introduction

The rationale for carefully planned experiments in
ecology is well documented (Hurlbert 1984). A well-
designed experiment will have a high probability of
detecting important, biologically meaningful differ-
ences among the experimental groups. Furthermore,
because the manager directly manipulated the experi-
mental factors and randomly assigned the
experimental units to the particular combination of
experimental factors, the manager can infer a causal
relationship between the experimental factors and
the response variable. The manager who takes a simi-
lar approach and practices active adaptive
management can make the strongest possible infer-
ences about the role of the experimental factors.

In many cases, controlled experiments are imprac-
tical or too expensive, and surveys of existing
ecological populations are performed, even though
the resulting inferences will be weaker than those
obtainable through controlled experimentation.

Consequently, nonexperimental surveys, or passive
adaptive management, leads to conclusions that are
primarily a tool for generating hypotheses eventually
to be tested by careful and more efficient experimen-
tation.

For example, observation surveys of existing lakes
showed that the more acidic lakes tended to have
fewer fish. An alternative explanation that could “ex-
plain” this result states that some unknown factor
causes the lake to acidify and also kills fish (i.e., the
relationship between numbers of fish and acidifica-
tion is due to a common response to another factor).
However, experiments where lakes were deliberately
acidified refute this alternate explanation. No such
refutation is possible from surveys of existing popu-
lations. The primary message is that causation cannot
be inferred without active manipulation.

Despite the weaker inferences from nonexperi-
mental surveys, the same attention must be paid to
the proper design of a survey so that inadvertent bi-
ases do not taint the conclusions. The many different
types of nonexperimental surveys are outlined in
Figure 3.1. To begin, consider the following series of
examples to illustrate the differences among these
types of surveys.

Experimental
studies

Designed
experiments

Descriptive
surveys

Observational

surveys
Non-experimental
studies
Analytical
surveys
Impact
surveys

FIGURE 3.1 A classification of the methods considered in
this chapter.
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3.1.1 Example A: descriptive survey

A manager is interested in examining the natural re-
generation in a cutblock harvested by clearcutting.
The objective is to measure the amount of regenera-
tion. A suitable response measure will be the density
of newly grown trees. A series of sample plots is sys-
tematically located within a single cutblock and the
density is measured on each sample plot. The mean
density over all plots is computed along with a meas-
ure of precision, the standard error. The study has
only one response variable, the density on each plot,
and no explanatory variables. This is a descriptive sur-
vey as no comparisons will be made with other
cutblocks and the information pertains only to that
particular cutblock. No inferences about the density
in other cutblocks is possible.

3.1.2 Example B: observational survey

This same manager now notices that north-facing
slopes seem to have a lower insect infestation rates
than south-facing slopes. One cutblock from a north-
facing slope and one cutblock from a south-facing
slope are selected. Sample plots are located on each
cutblock, and the insect infestation is measured on
each sample plot. The response variable is the
amount of infestation in each plot. The orientation of
the slope is an explanatory variable. Estimates of the
mean infestation are obtained for each block. The
sample means for each block likely differ, but with
information on the variation within each block, it is
possible to determine if the population means also
differ (i.e., to determine if the true average infestation
in the two blocks differs). This is an observational sur-
vey as two convenient cutblocks were selected and
compared. However, the results are only applicable
to the two cutblocks sampled and can neither be ex-
trapolated to other cutblocks, nor to the effects of
north- and south-facing slopes. The reason for this
weak inference is that the observed differences be-
tween the cutblocks may be due to just natural
variation unrelated to the direction of the slope; no
information has been collected on the variability
among cutblocks with the same orientation.

3.1.3 Example C: analytical survey

The manager expands the above survey. Within the
forest management unit, blocks are randomly chosen
in pairs so that, within each pair, one cutblock is on a
north-facing slope and the other is on a south-facing
slope. Sample plots are randomly located on each
cutblock, and the insect infestation is measured on

each sample plot. The response variable is the
amount of infestation in each plot. The orientation is
an explanatory variable. Estimates of the mean infes-
tation are obtained for each type of slope along with
the measures of precision. The manager then com-
pares the two means using information on both the
within-cutblock variability and the variability among
blocks with the same orientation. It may appear that
plots on the south-facing slope have a higher infesta-
tion than plots on a north-facing slope. This is an
analytical survey, as a comparison was made over an
entire population of cutblocks in the forest manage-
ment unit. This survey differs from a controlled
experiment in that the orientation of the cutblocks
cannot be controlled by the manager. An alternative
explanation for this observed result is that some
other unknown factor caused the insect infestations
to be different on the two orientations.

3.1.4 Example D: designed experiment

The manager is interested in testing the effect of two
different types of fertilizer on regeneration growth.
Experimental plots in several homogeneous cut-
blocks are established. Within each cutblock, plots
are randomly assigned to one of the fertilizers. The
regeneration growth of the plots treated with the two
fertilizers is then compared. The response variable is
the amount of growth; the explanatory variable is the
fertilizer type. Because plots were randomly assigned
to the fertilizers, the effects of any other, uncontrol-
lable, lurking factor should, on average, be about
equal in the two treatment groups. Consequently,
any difference in the mean regeneration growth can
be attributed to the fertilizer. The primary differences
between this example and Example C are that the
manager controls the explanatory factor and can ran-
domly assign experimental units to treatments. These
two differences in the protocol allow stronger infer-
ences than in analytical surveys.

3.1.5 Example E: impact survey
The manager wishes to examine if clearcutting is
changing the water quality on nearby streams. A con-
trol site with similar soil and topography as the
experimental site, is selected, in a provincial park.
Water quality readings are taken from both streams
several times before harvesting, and several times
after harvesting. The response variable is the water
quality; the explanatory variable is the presence or
absence of nearby clearcutting.

The changes in water quality in the control and
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experimental sites are compared. If the objective is

to examine if there is a difference in water quality
between these two specific sites, then the survey will
answer the question. This is similar to the strength of
inference for observational surveys (Example B). If
the objective is to extrapolate from this pair of sites
to the effects of clearcutting in general, the inference
is much more limited. First, because the control or
impact sites are not replicated it is impossible to
know if the observed differences are within the range
of natural variation. This limitation could be partly
resolved by adding multiple control sites and
assuming that the variability among control sites is
representative of that among impact sites. However,
the lack of randomization of the impact will still limit
the extent to which the results can be generalized.
But in the longer term, if there are several such pairs
of sites and all show the same type of impact, solid
grounds are established for assigning a causal rela-
tionship, even though randomization never took
place. This would be based on the idea of a super-
population consisting of all possible pairs of sites; it is
not likely that unobservable, latent factors would be
operating in the same direction in all experiments.
This last form is the closest to a designed experiment
for an impact survey.

Degree of control

Analytical
surveys

Observational
surveys

Descriptive
surveys

Control-Impact
surveys

Impact
surveys

These five examples differ in two important di-
mensions:

1. The amount of control over the explanatory factor.
Descriptive surveys have the least amount of con-
trol, while designed experiments have maximal
control.

2. The degree of extrapolation to other settings.
Again, in descriptive surveys, inference is limited
to those surveyed populations, while in designed
experiments on randomly selected experimental
units, inference can be made about future effects
of the explanatory factors.

In general, the more control or manipulation pre-
sent, the stronger the inferences that can be made
(Figure 3.2).

This chapter will present an overview of some of
the issues that arise in surveys lacking experimental
manipulations. It will start with an overview of the
descriptive surveys used to obtain basic information
about a population. Observational surveys will not be
explicitly addressed as their usefulness is limited and
their design and analysis are very close to analytical
surveys. Next, analytical surveys, where the goal is to
compare subsets of an existing population, will be

Designed
experiments

Strength of inference

FIGURE 3.2 Relationship between degree of control, strength of inference, and type of study design.
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described. Impact Surveys, where one site affected by
some planned or unplanned event and a control site
where no such event occurs are compared, will then
be discussed. Finally, some general principles of non-
experimental studies will be reviewed.

3.2 Descriptive Surveys

The goal of a descriptive survey is to estimate a para-
meter of interest (e.g., an average, total, proportion,

or ratio) for a single population (e.g., Example A of

Section 3.1). No attempt is made to compare the pa-

rameters between two or more populations.

Many excellent references on descriptive survey
methods are available (Cochran 1977; Krebs, 1989;
Thompson 1992). Therefore, this section is limited to
a brief account of the main survey methods that
could be used in field research. Details on actual field
procedures are also available; for example, Myers and
Shelton (1980).

3.2.1 Survey methods

Simple random sampling

Simple random sampling is the basic method of se-
lecting survey units. Each unit in the population is
selected with equal probability and all possible sam-
ples are equally likely to be chosen. This selection is
commonly done by listing all the members in the
population and then sequentially choosing units
using a random number table. Units are usually cho-
sen without replacement (i.e., each unit in the
population can only be chosen once). In some cases,
particularly for multistage designs, there are advan-
tages to selecting units with replacement (i.e., a unit
in the population may potentially be selected more
than once).

The analysis of a simple random sample is
straightforward. The mean of the sample is an esti-
mate of the population mean. An estimate of the
population total is obtained by multiplying the sam-
ple mean by the number of units in the population.
The sampling fraction, the proportion of units cho-
sen from the entire population, is typically small. If it
exceeds 20%, an adjustment (the finite population
correction) will result in better estimates of precision
(a reduction in the standard error) to account for the
fact that a substantial fraction of the population was
surveyed.

An example of a simple random sample would be a
vegetation survey in a large forest stand. The stand is

divided into 300 1-hectare plots, and a random sam-
ple of 20 plots was selected and analyzed using aerial
photos.

Pitfall: A simple random sample design is often “hid-
den” in the details of many other survey designs. For
example, many surveys of vegetation are conducted
using strip transects where the initial starting point of
the transect is randomly chosen, and then every plot
along the transect is measured. Here the strips are the
sampling unit, and are a simple random sample from
all possible strips. The individual plots are subsam-
ples from each strip and cannot be regarded as
independent samples. For example, suppose a rectan-
gular stand is surveyed using aerial overflights. In
many cases, random starting points along one edge
are selected, and the aircraft then surveys the entire
length of the stand starting at the chosen point. The
strips are typically analyzed section-by-section, but it
would be incorrect to treat the smaller parts as a sim-
ple random sample from the entire stand.

Solution: Note that a crucial element of simple ran-
dom samples is that every sampling unit is chosen
independently of every other sampling unit. For ex-
ample, in strip transects, plots along the same
transect are not chosen independently: when a par-
ticular transect is chosen, all plots along the transect
are sampled and so the selected plots are not a simple
random sample of all possible plots. Strip-transects
are actually examples of cluster-samples.

Systematic sampling

In some cases, it is logistically inconvenient to ran-
domly select sample units from the population. An
alternative is to take a systematic sample where every
k™ unit is selected (after a random starting point); k
is chosen to give the required sample size. For exam-
ple, if a stream is 2 km long, and 20 samples are
required, then k=100 and samples are chosen every
100 m along the stream after a random starting point.
A common alternative when the population does not
naturally divide into discrete units is grid-sampling.
Here sampling points are located using a grid that is
randomly located in the area. All sampling points are
a fixed distance apart.

If a known trend is present in the sample, it can be
incorporated into the analysis (Cochran 1977, Chap. 8).
For example, suppose that the systematic sample fol-
lows an elevation gradient that is known to directly
influence the response variable. A regression-type
correction can be incorporated into the analysis.
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However, note that this trend must be known from
external sources—it cannot be deduced from the
survey.

Pitfall: A systematic sample is typically analyzed in
the same fashion as a simple random sample. How-
ever, the true precision of an estimator from a
systematic sample can be either worse or better than
a simple random sample of the same size, depending
if units within the systematic sample are positively or
negatively correlated among themselves. For exam-
ple, if a systematic sample’s sampling interval
happens to match a cyclic pattern in the population,
values within the systematic sample are highly posi-
tively correlated (the sampled units may all hit the
“peaks” of the cyclic trend), and the true sampling
precision is worse than a simple random sample of
the same size. What is even more unfortunate is that,
because the units are positively correlated within the
sample, the sample variance will underestimate the
true variation in the population, and, if the estimated
precision is computed using the formula for a simple
random sample, a double dose of bias in the estimat-
ed precision occurs (Krebs 1989, p. 227). On the other
hand, if the systematic sample is arranged “perpen-
dicular” to a known trend to try to incorporate
additional variability in the sample, the units within a
sample are now negatively correlated, the true preci-
sion is now better than an simple random sample of
the same size, but the sample variance now overesti-
mates the population variance, and the formula for
precision from a simple random sample will over-
state the sampling error.

While logistically simpler, a systematic sample is
only “equivalent” to a simple random sample of the
same size if the population units are “in random
order” to begin with (Krebs 1989, p. 227). Even worse,
no information in the systematic sample allows the
manager to check for hidden trends and cycles.

Nevertheless, systematic samples offer the follow-
ing practical advantages over simple random
sampling if the bias in the estimated precision can be
corrected:

+ make plot relocation for long-term monitoring
easier;

+ allow mapping to be carried out concurrently with
the sampling effort because the ground is system-
atically traversed;

+ avoid poorly distributed sampling units, which can
occur with a simple random sample (this problem
can also be avoided by judicious stratification).

Solution: Because a strong assumption of “random-
ness” in the original population is necessary,
systematic samples are discouraged and statistical ad-
vice should be sought before starting such a scheme.
If no other designs are feasible, a slight variation in
the systematic sample provides some protection from
the previous problems. Instead of taking a single sys-
tematic sample every kb unit, take two or three
independent systematic samples of every 2k™ or 3k
unit, each with a different starting point. For exam-
ple, rather than taking a single systematic sample
every 100 m along the stream, two independent sys-
tematic samples can be taken, each selecting units
every 200 m along the stream starting at two random
starting points. The total sample effort is still the
same, but now some measure of the large-scale spa-
tial structure can be estimated. This technique is
known as replicated subsampling (Kish 1965, p. 127).

Cluster sampling

In some cases, units in a population occur naturally
in groups or clusters. For example, some animals
congregate in herds or family units. It is often conve-
nient to select a random sample of herds and then
measure every animal in the herd. This is not the
same as a simple random sample of animals because
individual animals are not randomly selected; the
herds were the sampling unit. The strip-transect ex-
ample in Section 3.2.1 is also a cluster sample; all plots
along a randomly selected transect are measured. The
strips are the sampling units, while plots within each
strip are subsampling units. Another example is cir-
cular plot sampling; all trees within a specified radius
of a randomly selected point are measured. The sam-
pling unit is the circular plot while trees within the
plot are subsamples.

The reason cluster samples are used is that costs
can be reduced compared to a simple random sample
giving the same precision. Because units within a
cluster are close together, travel costs among units
are reduced. Consequently, more clusters (and more
total units) can be surveyed for the same cost as a
comparable simple random sample.

Pitfall: A cluster sample is often mistakenly analyzed
using methods for simple random surveys. Such
analysis is not valid because units within a cluster are
typically positively correlated. This erroneous analy-
sis produces an estimate that appears to be more
precise than it really is (i.e., the estimated standard
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error is too small and does not fully reflect the actual
imprecision in the estimate).

Solution: To be confident that the reported standard
error really reflects the uncertainty of the estimate,
the analytical methods must be appropriate for the
survey design. The proper analysis treats the clusters
as a random sample from the population of clusters.
The methods of simple random samples are applied
to the cluster summary statistics (Thompson 1992,
Chap. 12; Nemec 1993).

Multi-stage sampling

In many situations the population is naturally divid-
ed into several different sizes of units. For example,

a forest management unit consists of several stands,
each stand has several cutblocks, and each cutblock
can be divided into plots. These natural divisions can
be easily accommodated in a survey through the use
of multistage methods. Units are selected in stages.
For example, several stands could be selected from a
management area; then several cutblocks are selected
in each of the chosen stands; then several plots are se-
lected in each of the chosen cutblocks. Note that in a
multistage design, units at any stage are selected at
random only from those larger units selected in pre-
vious stages.

The advantage of multistage designs are that costs
can be reduced compared to a simple random sample
of the same size, primarily through improved logis-
tics. The precision of the results is less than an
equivalent simple random sample, but because costs
are less, a larger multistage survey can often be com-
pleted for the same costs as a smaller simple random
sample. This approach often results in a more precise
design for the same cost. However, due to the misuse
of data from complex designs, simple designs are
often highly preferred and end up being more cost-
efficient when costs associated with incorrect deci-
sions are incorporated.

Pitfall: Although random selections are made at each
stage, a common error is to analyze these types of
surveys as if they arose from a simple random sam-
ple. The plots were not independently selected; if a
particular cutblock was not chosen, then none of the
plots within that cutblock can be chosen. As in clus-
ter samples, this erroneous analysis produces
estimated standard errors that are too small and do
not fully reflect the actual imprecision in the esti-
mates. A manager will be more confident in the
estimate than is justified by the survey.

Solution: Again, it is important that the analytical
methods are suitable for the sampling design. The
proper analysis of multistage designs considers that
random samples takes place at each stage (Thompson
1992, Chap. 13). In many cases, the precision of the
estimates is determined essentially by the number of
first-stage units selected. Little is gained by extensive
sampling at lower stages.

Multiphase designs

In some surveys, multiple surveys of the same survey
units are performed. In the first phase, a sample of
units is selected (usually by a simple random sam-
ple). Every unit is measured on some variable. Then
in subsequent phases, samples are selected ONLY
from those units selected in the first phase, not from
the entire population.

Multiphase designs are commonly used in two sit-
uations. In the first case, stratifying a population in
advance is sometimes difficult because the values of
the stratification variables are not known. The first
phase is used to measure the stratification variable on
a random sample of units. The selected units are then
stratified, and each stratum is further sampled as
needed to measure a second variable. This approach
avoids having to measure the second variable on
every unit when the strata differ in importance. For
example, in the first phase, plots are selected and
measured for the amount of insect damage. The plots
are then stratified by the amount of damage, and sec-
ond-phase allocation of units concentrates on plots
with low insect damage to measure total usable vol-
ume of wood. It would be wasteful to measure the
volume of wood on plots with heavy insect damage.

The second common occurrence for using a multi-
stage design is a surrogate variable (related to the real
variable of interest) on selected units is relatively easy
to measure, and then, in the second phase, the real
variable of interest is measured on a subset of the
units. The relationship between the surrogate and de-
sired variable in the smaller sample is used to adjust
the estimate based on the surrogate variable in the
larger sample. For example, managers need to esti-
mate the volume of wood removed from a harvesting
area. A large sample of logging trucks is weighed
(which is easy to do), and weight will serve as a sur-
rogate variable for volume. A smaller sample of
trucks (selected from those weighed) is scaled for vol-
ume and the relationship between volume and
weight from the second-phase sample is used to pre-
dict volume based on weight only for the first-phase
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sample. Another example is the count plot method of
estimating volume of timber in a stand. A selection of
plots is chosen and the basal area determined. Then a
sub-selection of plots is rechosen in the second

phase, and volumes are measured on the second-
phase plots. The relationship between volume and
area in the second phase is used to predict volume
from area measurements seen in the first phase.

Repeated sampling

One common objective of long-term surveys is to
investigate changes over time of a particular popula-
tion. This investigation, which involves repeated sam-
pling from the population, has three common designs.

First, separate independent surveys can be con-
ducted at each time point. This is the simplest design
to analyze because all observations are independent
over time. For example, independent surveys can be
conducted at 5-year intervals to assess regeneration of
cutblocks. However, precision of the estimated
change may be poor because of the additional vari-
ability introduced by having new units sampled at
each time point.

At the other extreme, units are selected in the first
survey and the same units are remeasured over time.
For example, permanent plots that are remeasured
for regeneration over time can be established. The
advantage of permanent plots is that comparisons
over time are free of additional variability introduced
by new units being measured at every time point.
One possible problem is that survey units have be-
come “damaged” over time, and the sample size will
tend to decline over time. An analysis of these types
of designs is more complex because of the need to ac-
count for (1) the correlation over time of
measurements on the same sample plot and (2) pos-
sible missing values when units become “damaged”
and are dropped from the survey.

Intermediate to the previous two designs are par-
tial replacement designs where a portion of the survey
units is replaced with new units at each time point.
For example, 20% of the units could be replaced by
new units at each time point; units would normally
stay in the survey for a maximum of five time peri-
ods. These types of designs require complex analysis.

Pitfall: The most common error made in analyzing
repeated sampling designs is to treat observations as
being independent. This typically leads to estimated
precisions that appear too precise (i.e., the real preci-
sion is much poorer).

Solution: The analysis of repeated samples is quite
complex—it is important to consult with an expert
in this field.

Designs for wildlife sampling

Two common survey designs for measuring wildlife
abundance are capture-recapture surveys and dis-
tance surveys.

In capture-recapture surveys (Otis et al. 1978;
Pollock et al. 1990), animals are captured, tagged, and
released on each of a number of time points. The pat-
tern of recaptures of the observed animals is used to
estimate survival rates and abundance. Skalski and
Robson (1992) discuss the design of surveys using
capture-recapture methods.

In distance surveys (Buckland et al. 1993), an ob-
server follows a transect and notes the angle and dis-
tance of animals from the transect line. A detection
function is constructed that relates the probability of
spotting an animal as a function of the distance from
the transect line and this is used to estimate abundance.

This section is deliberately brief as many complex
planning problems are associated with using these
methods and expert assistance is strongly recom-
mended.

3.2.2 Refinements that affect precision

Sampling with unequal probability

All of the designs discussed in previous sections have
assumed that each sample unit was selected with
equal probability. In some cases, it is advantageous to
select units with unequal probabilities, particularly if
they differ in their contribution to the overall total.
This technique can be used with any of the sampling
designs discussed earlier. An unequal probability
sampling design can lead to smaller standard errors
(i.e., greater precision) for the same total effort com-
pared to an equal probability design. For example,
forest stands may be selected with probability pro-
portional to the area of the stand (i.e., a stand of

200 ha will be selected with twice the probability than
a stand of 100 ha) because large stands contribute
more to the overall population and it would be
wasteful to spend much sampling effort on smaller
stands.

The variable used to assign the probabilities of se-
lection to individual survey units does not need to
have an exact relationship with an individual contri-
bution to the total. For example, in probability
proportional to prediction (3P) sampling, all trees in
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a small area are visited. A simple, cheap characteris-
tic, which is used to predict the value of the tree, is
measured. A subsample of the trees is then selected
with probability proportional to the predicted value,
remeasured using a more expensive measuring de-
vice. The relationship between the cheap and
expensive measurement in the second phase is used
with the simple measurement from the first phase to
obtain a more precise estimate for the entire area.
This example illustrates two-phase sampling with un-
equal probability of selection.

Stratification

All survey methods can potentially benefit from strat-
ification (also known as blocking in the experimental-
design literature). Stratification groups survey units
into homogeneous groups before conducting the sur-
vey, and then conducts independent surveys in each
stratum. At the end of the survey, the stratum results
are combined and weighted appropriately. For exam-
ple, a watershed might be stratified by elevation into
three strata, and separate surveys are conducted with-
in each elevation stratum. The separate results would
be weighted proportionally to the size of the eleva-
tion strata. Stratification will be beneficial whenever
variability among the sampling units can be antici-
pated and strata can be formed that are more
homogeneous than the original population.

A major question with stratified surveys is the
allocation of sampling units among the strata. De-
pending upon the goals of the survey, an optimal
allocation of sampling units can be one that is equal
in all strata, that is proportional to the stratum size,
or that is related to the cost of sampling in each stra-
tum (Thompson 1992, Chap. 11). Equal allocation
(where all strata have the same sample size) is pre-
ferred when equally precise estimates are required for
each stratum as well as for the overall population.
Proportional allocation (where the sample size in
each stratum is proportional to the population size)
is preferred when more precise estimates are required
in larger strata. If the costs of sampling vary among
the strata, then an optimal allocation that accounts
for costs would try to obtain the best overall preci-
sion at the lowest cost by allocating units among the
strata accounting for the costs of sampling in each
stratum.

Stratification can be carried out prior to the survey
(pre-stratification) or after the survey (post-stratifi-
cation). Pre-stratification is used if the stratum

variable is known in advance for every plot (e.g., ele-
vation of a plot). Post-stratification is used if the
stratum variable can only be ascertained after mea-
suring the plot (e.g., soil quality or soil pH). The
advantages of pre-stratification are that samples can
be allocated to the various strata in advance to opti-
mize the survey and the analysis is relatively
straightforward. With post-stratification, there is no
control over sample size in each of the strata, and the
analysis is more complicated (the samples sizes in
each stratum are now random). Post-stratification
can result in significant gains in precision but does
not allow for finer control of the sample sizes as
found in pre-stratification.

Auxiliary variables
An association between the measured variable of in-
terest and a second variable of interest can be
exploited to obtain more precise estimates. For ex-
ample, suppose that growth in a sample plot is
related to soil nitrogen content. A simple random
sample of plots is selected and the height of trees in
the sample plot is measured along with the soil nitro-
gen content in the plot. A regression model is fit
(Thompson 1992, Chap. 7 and 8) between the two
variables to account for some of the variation in tree
height as a function of soil nitrogen content. This ap-
proach can be used to make precise predictions of the
mean height in stands if the soil nitrogen content can
be easily measured. This method will be successful if
a direct relationship exists between the two variables.
The stronger the relationship, the more effective this
method will be. This technique is often called ratio-
estimation or regression-estimation.

Notice that multiphase designs often use an auxil-
iary variable but this second variable is only
measured on a subset of the sample units.

Unit size

A typical concern with any of the survey methods oc-
curs when the population does not have natural
discrete sampling units. For example, a large section
of land may be arbitrarily divided into 1 m* plots, or
10 m? plots. A natural question—is what is the “best
size” of unit?—has no simple answer and depends
upon several factors, which must be addressed for
each survey:

+ Cost: All else being equal, sampling many small
plots may be more expensive than sampling fewer
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larger plots. The primary difference in cost is the
overhead in travel and setup to measure the unit.

+ Size of unit: An intuitive feeling is that more small-
er plots are better than few large plots because the
sample size is larger. This will be true if the charac-
teristic of interest is “patchy,” but surprisingly,
makes no difference if the characteristic is ran-
domly scattered throughout the area (Krebs 1989,
p- 64). Indeed if the characteristic shows “avoid-
ance,” then larger plots are better. For example,
competition among trees implies they are spread
out more than expected if they were randomly lo-
cated. Logistical considerations often influence the
plot size. For example, if trampling the soil affects
the response, then sample plots must be small
enough to measure without trampling the soil.

+ Edge effects: Because the population does not have
natural boundaries, decisions must often be made
about objects that lie on the edge of the sample
plot. In general, larger square or circular plots are
better because of smaller edge-to-area ratio. (A
long narrow rectangular plot can have more edge
than a similar-area square plot.)

+ Size of object being measured: Clearly, a 1 m* plot
is not appropriate when counting mature Douglas-
fir, but may be appropriate for a lichen survey.

A pilot survey should be carried out prior to a
large-scale survey to investigate factors that influence
the choice of sampling unit size.

Sample size determination

An important question in survey design is the choice
of sample size, which is the primary determinant of
the costs of the survey and of precision. The sample
size should be chosen so that the final estimates have
a precision that is adequate for the management
question. Paradoxically, to determine the proper
sample size, some estimate of the population values
needs to be known before the survey is conducted!
Historical data can sometimes be used. In some cases,
pilot surveys will be needed to obtain preliminary
estimates of the population values to plan the main
survey. (Pilot surveys are also useful to test the proto-
col. Refer to Section 3.5).

Unfortunately, sometimes even pilot surveys can-
not be done because of the difficulty in sampling or
because the phenomenon is a one-time event. If a
study has multiple objectives, reconciling the sample

size requirements for each objective may also be diffi-
cult. In these and many other cases, sample sizes are
determined solely by the budget for the survey.

3.3 Analytical Surveys

In descriptive surveys, the objective was to simply
obtain information about one large group. In
observational surveys, two deliberately selected sub-
populations are chosen and surveyed, but the results
are not generalized to the whole population. In
analytical surveys, subpopulations are selected and
sampled to generalize the observed differences
among the subpopulation to this and other similar
populations.

As such, analytical and observational surveys and
experimental design are similar. However, the prima-
ry difference is that, in experiments, the manager
controls the assignment of the explanatory variables
while measuring the response variables, whereas in
analytical and observational surveys, neither set of
variables is under the control of the manager. (Refer
to Section 3.1, Examples B, C, and D). The analysis of
complex surveys for analytical purposes can be very
difficult (Sedransk 1965a, 1965b, 1966; Rao 1973; Kish
1984, 1987).

The first step in analytical surveys is to identify po-
tential explanatory variables (similar to factors in
experiments). At this point, analytical surveys can be
usually further subdivided into three categories de-
pending on the type of stratification:

+ the population is pre-stratified by the explanatory
variables and surveys are conducted in each stra-
tum to measure the outcome variables;

+ the population is surveyed in its entirety, and post-
stratified by the explanatory variables; and

+ the explanatory variables can be used as auxiliary
variables in ratio or regression methods.

In very complex surveys, all three types of stratifi-
cation may take place.

The choice between the categories is usually made
by the ease with which the population can be pre-
stratified and the strength of the relationship between
the response and explanatory variables. For example,
sample plots can be easily pre-stratified by elevation
or by exposure to the sun, but it would be difficult to
pre-stratify by soil pH.

Pre-stratification has the advantage that the man-
ager controls the number of sample points collected
in each stratum. However, the numbers are not
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controllable in post-stratification and may lead to
very small sample sizes in certain strata just because
the strata form only a small fraction of the popula-
tion.

For example, a manager may wish to investigate
the difference in regeneration (as measured by the
density of new growth) as a function of elevation.
Several cutblocks will be surveyed. In each cutblock,
the sample plots will be pre-stratified into three ele-
vation classes, and a simple random sample will be
taken in each elevation class. The allocation of effort
in each stratum (i.e., the number of sample plots)
will be equal. The density of new growth will be mea-
sured on each selected sample plot. On the other
hand, suppose that the regeneration is a function of
soil pH. This cannot be determined in advance, and
so the manager must take a simple random sample
over the entire stand, measure the density of new
growth and the soil pH at each sampling unit, and
then post-stratify the data based on measured pH.
The number of sampling units in each pH class is not
controllable—indeed it may turn out that certain pH
classes have no observations.

If explanatory variables are treated as a auxiliary
variables, then a strong relationship must exist be-
tween the response and explanatory variables and the
auxiliary variable must be able to be measured pre-
cisely for each unit. Then, methods like multiple
regression can also be used to investigate the rela-
tionship between the response and the explanatory
variable. For example, rather than classifying eleva-
tion into three broad elevation classes or soil pH into
broad pH classes, the actual elevation or soil pH must
be measured precisely to serve as an auxiliary variable
in a regression of regeneration density versus eleva-
tion or soil pH.

If the units have been selected using a simple ran-
dom sample, then the analysis of the analytical
surveys proceeds along similar lines as the analysis of
designed experiments (Kish 1987; Nemec, this vol-
ume, Chap. 2). In most analyses of analytical surveys,
the observed results are postulated to have been
taken from a hypothetical super-population of which
the current conditions are just one realization. In the
above example, cutblocks would be treated as a
random blocking factor, elevation class as an ex-
planatory factor, and sample plots as samples within
each block and elevation class. Hypothesis testing
about the effect of elevation on mean density of re-
generation occurs as if this were a planned
experiment.

Pitfall: Any one of the sampling methods described
in Section 3.2 for descriptive surveys can be used for
analytical surveys. Many managers incorrectly use the
results from a complex survey as if the data were
collected using a simple random sample. As Kish
(1987) and others have shown, this mistake can lead
to substantial underestimates of the true standard
error (i.e., the precision is thought to be far greater
than is justified based on the survey results). Conse-
quently, the manager may erroneously detect
differences more often than expected (i.e., make a
Type I error) and make decisions based on erroneous
conclusions.

Solution: As in experimental design, it is important
to match the analysis of the data with the survey de-
sign used to collect it. The major difficulties in
analyzing analytical surveys are:

1. Recognizing and incorporating the sampling
method used to collect the data in the analysis. The
survey design used to obtain the sampling units
must be taken into account in much the same way
as the analysis of the collected data is influenced by
actual experimental design. “Equivalencies” be-
tween terms in a sample survey and terms in
experimental design are provided in Table 3.1. No
quick and easy method is available for the analysis
of complex surveys (Kish 1987). The super-popula-
tion approach seems to work well if the selection
probabilities of each unit are known (these are
used to weight each observation appropriately)
and if random effects corresponding to the various
strata or stages are employed. The major difficulty
caused by complex survey designs is that the ob-
servations are not independent of each other. This
nonindependence, if properly incorporated into
the analysis, can improve precision. If not ac-
counted for, nonindependence will lead to
seriously biased estimates of precision.

2. Unbalanced designs (e.g., unequal numbers of
sample points in each combination of explanatory
factors). This difficulty typically occurs if post-
stratification is used to classify units by the explana-
tory variables but can also occur in pre-stratifica-
tion if the manager decides not to allocate equal
effort in each stratum. The analysis of unbalanced
data is described by Milliken and Johnson (1984).

3. Missing cells (i.e., certain combinations of ex-
planatory variables may not occur in the survey).
The analysis of such surveys is complex, but refer
to Milliken and Johnson (1984).
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4. If the range of the explanatory variable is naturally
limited in the population, then extrapolation
outside of the observed range is not recommended.

More sophisticated techniques can also be used in
analytical surveys. For example, correspondence
analysis, ordination methods, factor analysis, multi-
dimensional scaling, and cluster analysis all search
for associations among measured variables that may
give rise to hypotheses for further investigation. Un-
fortunately, most of these methods assume that units
have been selected independently of each other using
a simple random sample; extensions where units
have been selected via a complex sampling design
have not yet developed. Simpler designs are often
highly preferred to avoid erroneous conclusions
based on inappropriate analysis of data from com-
plex designs.

Pitfall: While the analysis of analytical surveys and
designed experiments are similar, the strength of the
conclusions is not. In general, causation cannot be
inferred without manipulation. An observed rela-
tionship in an analytical survey may be the result of
a common response to a third, unobserved variable.
For example, consider the two following experi-
ments. In the first experiment, the explanatory
variable is elevation (high or low). Ten stands are
randomly selected at each elevation. The amount of
growth is measured and it appears that stands at

higher elevations have less growth. In the second ex-
periment, the explanatory variable is the amount of
fertilizer applied. Ten stands are randomly assigned
to each of two doses of fertilizer. The amount of
growth is measured and it appears that stands that
receive a higher dose of fertilizer have greater growth.
In the first experiment, the manager cannot say
whether the differences in growth are due to differ-
ences in elevation or amount of sun exposure or soil
quality as all three may be highly related. In the sec-
ond experiment, all uncontrolled factors are present
in both groups and their effects will, on average, be
equal. Consequently, the assignment of cause to the
fertilizer dose is justified because it is the only factor
that differs (on average) among the groups.

As noted by Eberhardt and Thomas (1991), rigor-
ous application of the techniques for survey sampling
is needed when conducting analytical surveys, other-
wise these surveys are likely to be subject to biases.
Experience and judgement are very important in
evaluating the prospects for bias, and attempting to
find ways to control and account for these biases. The
most common source of bias is the selection of sur-
vey units; the most common pitfall is to select units
based on convenience rather than on a probabilistic
sampling design. The potential problems that this
can lead to are analogous to those that occur when it
is assumed that callers to a radio phone-in show are
representative of the entire population.

TABLE 3.1 Equivalencies between terms used in surveys and in experimental design

Survey term

Experimental design term

Simple random sample

Cluster sampling

Completely randomized design

(a) Clusters are random effects; units within a cluster treated as subsamples; or

(b) Clusters treated as main plots; units within a cluster treated as subplots in a

split-plot analysis

Multi-stage sampling

(a) Nested designs with units at each stage nested in units in higher stages. Effects

of units at each stage treated as random effects; or

(b) Split-plot designs with factors operating at higher stages treated as main plot
factors and factors operating at lower stages treated as subplot factors

Stratification
Sampling unit

Subsample Subsample

Fixed factor or random block depending on the reasons for stratification

Experimental unit or treatment unit
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3.4 Impact Surveys

Probably the most important and controversial use
of surveys is to investigate the effects of large-scale,
potentially unreplicated events. These impact surveys
investigate the impact of an event or process. In many
cases, this survey must be done without having the
ability or resources to conduct a planned experiment.

Consider three examples: the impact of a hydro-
electric dam on water quality of the dammed stream;
the impact of clearcuts on water quality of nearby
streams; and the effect of different riparian zone
widths along streams near clearcuts. First, random-
ization and replication are not possible in the first
example. Only one dam will be built on one stream.
In the other two examples, it is possible to randomize
and replicate the experiment and so the principles of
experimental design may be useful. Second, the im-
pact of the first two examples can be compared to a
control or non-treated site while in the last example
impacts are compared: the two different riparian
zone widths.

Regardless of the control over randomization and
replication, the goal of impact surveys is typically to
measure ecological characteristics (usually over time)
to look for evidence of a difference (impact) between
the two sites. Presumably, this impact will be attrib-
uted to the event, but, as shown later, the lack of
replication and randomization may limit the general-
ization of the findings. Then, based on the findings,
remediation or changes in future events will be
planned. In all cases, the timing of the event must be
known in advance so that baseline information can
be collected.

A unifying example for this section will be an in-
vestigation of the potential effects of clearcuts on
water quality of nearby streams. Several, successively
more complex impact designs will be considered.

3.4.1 Designs

Before-after contrasts at a single site

This is the simplest impact design. A single survey is
taken before and after a potential disturbance. This
design is widely used in response to obvious acciden-
tal incidences of potential impact (e.g., oil spills,
forest fires), where, fortuitously, some prior informa-
tion is available. From this survey, the manager
obtains a single measurement of water quality before
and after the event. If the second survey reveals a
change, this difference is attributed to the event.

Pitfalls: The observed event and the changes in the
response variable may not be related—the change
may be entirely coincidental. Even worse, no infor-
mation is collected on the natural variability of the
water quality over time and the observed differences
may simply be due to natural fluctuations over time.
Decisions based on this design are extremely hard to
justify. This design cannot be used if the event cannot
be planned and no prior data are available. In these
cases, little can be said about the impact of the event.

Repeated before-after sampling at a single site
An embellishment on the previous sampling scheme
is to perform multiple surveys of the stream at multi-
ple time points before and after the event. In this
design, information is collected on the mean water
quality before and after the impact. As well, informa-
tion is collected on the natural variability over time.
This design is better than the previous design in that
observed changes due solely to natural fluctuations
over time can be ruled out and consequently any ob-
served change in the mean level is presumably real.
The choice between regular intervals and random
intervals depends upon the objectives of the survey.
If the objective is to detect changes in trend, regularly
spaced intervals are preferred because the analysis is
easier. On the other hand, if the objective is to assess
differences before and after impact, then samples at
random time points are advantageous, because no
cyclic differences unforeseen by the sampler will in-
fluence the size of the difference. For example,
surveys taken every summer for several years before
and after the clearcutting may show little difference
in water quality but potentially significant differences
in the winter may go undetected.

Pitfall: Despite repeated surveys, this design suffers
from the same flaw as the previous design. The re-
peated surveys are pseudoreplications in time rather
than real replicates (Hurlbert 1984). The observed
change may have occurred regardless of the clearcut
because of long-term trends over time. Again, deci-
sions based on this design are difficult to justify.

BACI: Before-after-control-impact surveys

As Green (1979) pointed out, an optimal impact sur-

vey has several features:

+ the type of impact, time of impact, and place of
occurrence should be known in advance;

+ the impact should not have occurred yet; and

+ control areas should be available.
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The first feature allows the surveys to be efficiently
planned to account for the probable change in the
environment. The second feature allows a baseline
survey to be established and to be extended as need-
ed. The last feature allows the surveyor to distinguish
between temporal effects unrelated to the impact and
changes related to the impact.

The simplest BACI design will have two times of
sampling (before and after impact) in areas (treat-
ment and a control) with biological and environmen-
tal variables being measured in all combinations of
time and area. In this example, two streams would
be sampled. One stream would be adjacent to the
clearcut (the treatment stream); the second stream
would be adjacent to a control site that is not clearcut
and should have similar characteristics to the treat-
ment stream and be exposed to similar climate and
weather. Both streams are sampled at the same time
points before the clearcut occurs and at the same
time point after the clearcut takes place. Technically,
this is known as an area-by-time factorial design, and
evidence of an impact is found by comparing the

before and after samples for the control site with the
before and after samples for the treatment sites. This
contrast is known as the area-by-time interaction
(see Figure 3.3).

This design allows for both natural stream-to-
stream variation and coincidental time effects. If the
clearcut has no effect, then change in water quality
between the two time points should be the same (i.e.,
parallel lines in Figures 3.3a and b). On the other
hand, if the clearcut has an impact, the time trends
will not be parallel (Figures 3.3¢, d, and e).

Pitfalls: Hurlbert (1984), Stewart-Oaten et al. (1986),
and Underwood (1991) discuss the simple BACI de-
sign and point out concerns with its application.
First, because impact to the sites was not randomly
assigned, any observed difference between control
and impact sites may be related solely to some other
factor that differs between the two sites. One could
argue that it is unfair to ascribe the effect to the im-
pact. However, as Stewart-Oaten et al. (1986) point
out, the survey is concerned about a particular impact
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FIGURE 3.3 Simplified outcomes in a BACI design.

The change in a measured variable from two sampling occasions (dots at before and after the impact) in the
control (solid line) or impact (shaded line) sites. In (a) and (b) the lines are parallel and there is no evidence of
an impact. The difference in (b) between control and impact sites reflects area differences, but both sites
experience the same temporal trend. In (c), (d), and (e), the change over time differs between the control and
impact sites. This change is evidence of a time-treatment interaction, or that the impact has had an effect.
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in a particular place, not in the average of the impact
when replicated in many different locations. Conse-
quently, detecting a difference between these two
specific sites may be possible; however, without ran-
domization of replicate treatments at many different
sites, the findings from this survey cannot be general-
ized to other events on different streams.

This concern can be reduced by monitoring sever-
al control sites (Underwood 1991). However, two
assumptions must be made: (1) the variation in the
(After—Before) measurements of the multiple con-
trol sites is the same as the variation among potential
impact sites, and (2) the variability over time between
the control sites is not correlated. Then the plausabil-
ity of the difference observed in the impact site can
be estimated given the observed variability in the
changes in the control sites. In our example, several
control streams could be monitored at the same time

points as the single-impact stream. Then if the ob-
served difference in the impact stream is much
different than could be expected based on the multi-
ple-control streams, the event is said to have caused
an impact. When several control sites are monitored,
the lack of randomization is less of a concern because
the replicated control sites provide some information
about potential effects of other factors.

The second and more serious concern with the
simple BACI design with a single sampling point be-
fore and after the impact is that it fails to recognize
that natural fluctuations in the characteristic of inter-
est that are unrelated to any impact may occur
(Hurlbert 1984; Stewart-Oaten et al. 1986). For exam-
ple, consider Figure 3.4. If there were no natural
fluctuations over time, the single samples before and
after the impact would be sufficient to detect the
effects of the impact. However, if the population also
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FIGURE 3.4 Problems with the simple BACI design.

The change in a measured variable from two sampling occasions (dots at before and after the impact) in the
control (solid line) or impact (shaded line) sites. In (a), there is little natural variation in the response over time
and so the measured values indicate a change in the mean level. In (b) and (c), natural variation is present,
but, because only one point was sampled before and after impact, it is impossible to distinguish between no

impact (b) and impact (c) on the mean level.
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The change in a measured variable from multiple randomly chosen sampling occasions (dots at before and
after the impact) in the control (solid line) or impact (shaded line) sites. In (a), there is no impact and the
mean level of the difference (bottommost line) is constant over time. In (b), there is an impact, and the mean
level of the difference (bottommost line) changes over time.

has natural fluctuations over and above the long-
term average, then distinguishing between cases
where there is no effect from those where there was
impact is impossible. In terms of our example, differ-
ences in the water quality may be artifacts of the
sampling dates and natural fluctuations may obscure
differences or lead to the conclusion that differences
are present when they are not.

BACI-P: Before-after-control-impact
paired designs
Stewart-Oaten et al. (1986) extended the simple BACI
design by pairing surveys at several selected time
points before and after the impact. Both sites are
measured at the same time points. An analysis of how
the difference between the control and impact sites
changes over time would reveal if an impact has oc-
curred (Figure 3.5). The rationale behind the design is
that repeated sampling before the development indi-
cates the pattern of differences over several periods of
potential change between the two sites. This survey
design provides information both on the mean differ-
ence in the water quality before and after impact, and
on the natural variability of the water quality mea-
surements. If the changes in the mean difference are
large relative to natural variability, the manager has
detected an effect.

The decision between random and regularly

spaced intervals has been discussed in an earlier
section—the same considerations apply here.

Pitfall: As with all surveys, numerous assumptions
need to be made during the analysis (Stewart-Oaten
et al. 1992; Smith et al. 1993). The primary assump-
tion is that the responses over time are independent
of each other. A lack of independence over time
tends to produce false-positives (Type I errors) where
the manager may declare that an impact has occurred
when in fact, none has. In these cases formal time se-
ries methods may be necessary (Rasmussen et al.
1993). (The analysis of time series is easiest with regu-
larly spaced sampling points).

Two other assumptions are made: that the differ-
ence in mean level between control and impact sites
is constant over time in the absence of an impact ef-
fect and that the effect of the impact is to change the
arithmetic difference. In our example, the difference
in the mean water quality between the two sites
would be assumed to be constant over time. The
mean water quality measurements may fluctuate over
time, but both sites are assumed to fluctuate in lock-
step with each other maintaining the same average
arithmetic difference. One common way this as-
sumption is violated is if the response variable at the
control site is a constant multiple of the response
variable at the impact site. Then arithmetic differences
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will depend upon the actual levels. For example, sup-
pose that the readings of water quality at two sites at
the first time point were 200 versus 100, which has an
arithmetic difference of 100; at the second time point,
the readings were 20 versus 10, which has an arith-
metic difference of 10; but both pairs are in a 2:1 ratio
at both time points. The remedy is simple: a logarith-
mic transform of the raw data converts a multi-
plicative difference into a constant arithmetic
difference on the logarithmic scale. This problem is
commonly found when water quality measurements
are concentrations (e.g., pH).

Underwood (1991) also considered two variations
on the BACI-P design. First, it may not be possible to
sample both sites simultaneously for technical or lo-
gistical reasons. Underwood (1991) discussed a
modification where sampling is done at different
times in each site before and after impact (i.e., sam-
pling times are no longer paired), but notes that this
modification cannot detect changes in the two sites
that occurred before the impact. For example, differ-
ences in water quality may show a gradual change
over time in the paired design prior to impact. With-
out paired sampling, it would be difficult to detect
this change. Second, sampling only a single control
site still has the problems identified earlier of not
knowing if observed differences in the impact and
the control sites are site-specific. Again, Underwood
(1991) suggests that multiple control sites should be
monitored. In our example, more than one control
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site would be measured at each time point. The vari-
ability in the difference between each control site and
the impact site provides information on generaliza-
tion to other sites.

Enhanced BACI-P: Designs to detect acute versus
chronic effects or to detect changes in variation as
well as changes in the mean

As Underwood (1991) pointed out, the previous de-
signs are suitable for detecting long-term (chronic)
effects in the mean level of some variable. In some
cases, the impact may have an acute effect (i.e., ef-
fects only last for a short while) or may change the
variability in response (e.g., seasonal changes become
more pronounced). Underwood’s solution is to
modify the sampling schedule so that it occurs on
two temporal scales (Figure 3.6). For example, groups
of surveys could be conducted every 6 months with
three surveys 1 week apart randomly located within
each group. The analysis of such a design is presented
in Underwood (1991). Again, several control sites
should be used to confound the argument about de-
tected differences being site-specific.

This design is also useful when there are different
objectives. For example, the objective for one variable
may be to detect a change in trend. The pairing of
sample points on the long time scale leads to efficient
detection of trend changes. The objectives for anoth-
er variable may be to detect differences in the mean
level. The short time scale surveys randomly located
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FIGURE 3.6  The enhanced BACI-P design.

Period 1
After impact

Period 2

The change in a measured variable from multiple randomly chosen sampling occasions in two periods (dots at
before and after the impact) in the control (black line) or impact (shaded line) sites. The two temporal scales
(sampling periods vs sampling occasions) allows the detection of a change in mean and in a change in

variability after impact.
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in time and space are efficient for detecting differ-
ences in the mean level.

3.4.2 Issues in impact surveys

Time dependence

Many of the analyses proposed for the above surveys
(e.g., regression or ANOVA) have methodological
problems that need to be resolved before interpreting
the results.

In regression of the characteristics versus time, the
estimated slope is often used as evidence of a long-
term change. However, data collected over time
violate the assumption of independence required for
ordinary regression. The estimate of the slope re-
mains unbiased, but typically the estimated standard
error of the slope is too small. The results appear to
be “statistically significant” when, in fact, there is no
evidence of a change (Neter et al. 1990, Chap. 13) and
a Type I error would have been made.

Comparing the means before and after impact
using ANOVA methods also suffers from the same
problem of correlation among the measurements.
Again, a typical result is that the estimated standard
error of the difference is too small, and results are de-
clared “statistically significant” when in fact they are
not, and a Type I error would have been made.

An alternative analysis is to use time-series meth-
ods that incorporate temporal correlation. The
analysis of time series is quite complex (Nelson 1973)
particularly if the time points are unequally spaced. If
the data points are taken before and after the impact,
the time series analysis can be extended using inter-
vention analysis to test if an impact changed the level
of the series (Rasmussen et al. 1993).

Temporary or permanent monitoring sites

A common question in monitoring surveys is the use
of temporary or permanent monitoring sites. For ex-
ample, should permanent water quality sampling
sites that are remeasured over time, or temporary
sampling sites that are re-randomized at each time be
used? Many of the concerns are similar to those for
repeated sampling designs discussed earlier. Perma-
nent plots give better estimates of change over time
because the extra plot-to-plot variability caused by
bringing in new plots each year is removed. However,
the costs of establishing permanent plots are higher
than for temporary sites, and the first randomization
may lead to a selection of plots that have some

strange characteristics. Of course, if the measurement
process alters the sampling unit, new plots will have
to be selected for each survey. A compromise solu-
tion is a rotating panel survey, where only a part of
the sample is changed at each time point. In large,
complex, long-term designs with multiple objectives,
permanent plots are often the preferred solution
since no survey design is optimal for all objectives
and the objectives change over time.

3.4.3 Impact surveys summary

As noted by Smith et al. (1993), the BACI-P design
and its extensions are one of the best models for im-
pact assessment. These designs can show that
observed differences in ecological variables between
the control and impact sites are neither artifacts of
sampling nor due to temporal trends unrelated to the
impact. The strength of the inference is directly relat-
ed to the design issues directly under the control of
the managers such as the frequency of sampling and
number of control sites. Because of the potentially
large amounts of data collected, quality assurance
methods need to be employed throughout the length
of the survey so that problems in data management,
data handling, or changes in personnel do not com-
promise the survey.

3.5 Conclusion

Green (1979) gave 10 principles applicable to any
sampling design; these principles have been para-
phrased, reordered, and extended below. Underwood
(1994) also gives some advice on areas of common
misunderstanding between environmental biologists
and statisticians.

1. Formulate a clear, concise hypothesis

The success or failure of a sampling program often
hinges on clear, explicit hypotheses. Woolly thinking
at this stage frequently leads to massive amounts of
data collected without enough planning as to how, to
what end, and at what cost the information can be
subsequently handled. Hypotheses should be stated
in terms of direct, measurable variables (e.g., action
X will cause a decrease in Y). The hypotheses to be
tested have implications for what and how data are to
be collected.

2. Ensure that controls will be present
Most surveys are concerned with changes over time,
typically before and after some impact. Effects of an
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impact cannot be demonstrated without the presence
of controls serving as a baseline so that changes over
time, unrelated to the impact, can be observed. With-
out controls, no empirical data are available to refute
the argument that observed changes might have oc-
curred regardless of impact.

3. Stratify in time and space to reduce hetero-
geneity
If the area to be sampled is large and heterogeneous
(highly variable), then sampling from the entire area,
ignoring the known heterogeneity, reduces the preci-
sion of the estimate. Extra variation may be
introduced to the measured variable solely by differ-
ences within the survey area unrelated to the
treatment. By stratifying the survey area in advance
(also known as blocking in the experimental design
literature), this extra variability can be accounted for.
The judicious choice of auxiliary variables can also be
used to increase precision of the estimates.

4. Take replicate samples within each combination
of time, space, or any other controlled variable
Differences among treatments can only be demon-
strated by comparing the observed differences among
treatments with differences within each treatment.
Lack of replication often restricts the interpretation
of many experiments and surveys to the sampled
units rather than to the entire population of interest.
It is imperative that the replicates be true replicates
and not pseudoreplicates (Hurlbert 1984), where the
same experimental unit is often measured many times.

5. Determine the size of a biologically meaningful,
substantive difference that is of interest
A sufficiently large survey (i.e., with large sample
sizes) can detect minute differences that may not be
of biological interest. It is important to quantify the
size of a difference that is biologically meaningful be-
fore a survey begins so that resources are not wasted
either by performing a survey with an excessive sam-
ple size or by performing a survey that has lower
power to detecting this important difference.

6. Estimate the required sample sizes to obtain ad-
equate power to detect substantive differences
or to ensure sufficient precision of the estimates

In this era of fiscal restraint, it is unwise to spend sig-

nificant sums of money on surveys or experiments

that have only a slight chance of detecting the effect
of interest or give estimates that are so imprecise as
to be useless. Such designs are a waste of time and
money.

If the goal of the survey is to detect a difference
among populations, the required sample sizes will
depend upon the magnitude of the suspected differ-
ence, and the amount of natural variation present.
Estimates of these qualities can often be obtained
from experience, literature reviews of similar surveys,
or pilot surveys. Simulation studies can play an im-
portant role in assessing the efficiency of a design.

If the goal is descriptive, then the required sample
sizes will depend only upon the natural variation pre-
sent. As mentioned, estimates of the variability can
be obtained from experience, literature reviews, or a
pilot survey.

As noted earlier, it may be infeasible to conduct a
pilot survey, historical data may not exist, or it may
be difficult to reconcile sample sizes required for dif-
ferent objectives. Some compromise will be needed
(Cochran 1977, pp. 81-82).

One common misconception is that sample size is
linked to the size of the population. To the contrary,
the sample sizes required to estimate a parameter in a
small population with a specified precision are the
same as in a large population. This non-intuitive re-
sult has a direct analogue in testing a pot of soup for
salt—the cook tastes only a spoonful regardless of
pot size.

7. Allocate replicate samples using probabilistic
methods in time and space
There is a tendency to allocate samples into “repre-
sentative” or “typical” locations. Even worse are
convenience samples where the data are collected at
sampling points that are easily accessible or close-at-
hand. The key to ensuring “representativeness” is
randomization. Randomization ensures that the ef-
fects of all other uncontrollable variables are equal,
on average, in the various treatment groups or that
they appear in the sample, on average, in the same
proportions as in the population. Unless the manager
is omniscient, it is difficult to ensure that “represen-
tative” or “typical” sites are not affected by other,
unforeseen, uncontrollable factors.

Notice that a large sample size does not imply rep-
resentativeness. Randomization controls
representativeness; sample size controls statistical
power.

8. Pretest the sampling design and sampling
methods

It is difficult to spend effort on a pilot survey

knowing that the data collected may not contribute

to the final results and may be thrown away. Howev-
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er, this approach is the only way to check if serious
problems exist in the survey, if the size of the survey
unit is appropriate, if the data collection forms are
adequate, and if the actual level of variability is pre-
sent in the field, etc.

After a pilot survey has been conducted, its results
can be used to modify the proposed design and fine-
tune such aspects as the required sample size. In
many cases, a pilot survey shows that the objectives
of the proposed survey are unobtainable for the pro-
jected cost and effort and the survey must be
substantially modified or abandoned.

9. Maintain quality assurance throughout the
survey
Despite best efforts, plans will deviate during the
course of the survey, particularly if the survey extends
over many years and personnel changes. Many of the
principles of statistical process control can be applied
here (Montgomery 1991). For example, ensure that
instruments are recalibrated at regular intervals, sam-
pling protocols are followed consistently among
different team members, and data are being keyed
correctly.

10. Check the assumptions of any statistical analysis
Any statistical procedure makes explicit and implicit
assumptions about the data collected. Match the
analysis with the survey design. In many cases, a “sta-
tistically significant” result can be obtained
erroneously if assumptions necessary for the analysis
were violated.

11. Use the “Inter-Ocular Trauma Test”
Presentation of final results is just as important as de-
sign, execution, and analysis. A survey will be of
limited usefulness if it sits on a shelf because other
readers are unable to interpret the findings. Good
graphical methods (figures, plots, charts, etc.) or pre-
sentations will pass the Inter-Ocular Trauma Test
(i.e., the results will “hit you between the eyes!”)

Despite their limitations, uncontrolled events can
play a useful role in adaptive management. The study
of uncontrolled events and designed experiments dif-
fer in two important dimensions:

1. The amount of control. As the name implies, the
study of uncontrolled events does not give the
manager the ability to manipulate the explanatory
variables.

2. The degree of extrapolation to other settings. The
lack of randomization implies that the manager

must be careful in extrapolating to new situations
because of the possible presence of latent, lurking
factors.

These differences imply that inferences are not as
strong as those made after carefully controlled exper-
iments, but the results often lead to new hypotheses
being tested in future research. Despite the weaker
inferences from studying uncontrolled events, the
same attention must be paid to the proper design of a
survey so that inadvertent biases do not taint the
conclusions.
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4 RETROSPECTIVE STUDIES

G. JOHN SMITH

Abstract

Statistics are extremely important to resource manage-
ment. The rigour of gathering and analyzing data for
a proper statistical analysis often conflicts with the
need to obtain the required information within a short
time frame and within a limited budget. Retrospective
studies are one alternative to a fully controlled, or
prospective, study. These studies offer a compromise,
which uses existing data or circumstances. This ap-
proach greatly shortens the time between the incep-
tion of the study and the presentation of the results,
as well as reduces the cost. A considerable degree of
methodological correctness can be maintained by
careful design, analytical techniques, and presentation
of results.

As with any compromise, retrospective studies must
be used carefully. In retrospective analyses, often the
results are preliminary, and sometimes do not allow
for quantitative model building, hypothesis testing, or
point estimation. However, by carefully presenting re-
sults and designing the study, and being aware of the
pitfalls inherent in individual analyses, a great deal of
useful information can be obtained. Even if the results
are interim, such efforts can be beneficial to the gath-
ering of future information, and to decision-making
processes. Managers need all the tools available to
properly manage forest resources and adapt to chang-
ing conditions and priorities.

In this chapter, a definition and many examples are
presented to demonstrate the differences between
prospective and retrospective studies. Each example is
reviewed with an emphasis on contrasting retrospec-
tive and prospective studies, and pointing out the
strengths and weaknesses of the retrospective ap-
proach. Finally, some suggestions are given regarding
the design of retrospective studies and the analysis of
retrospective data.

4.1 Introduction

In any study involving data, two values help deter-
mine the methodology to apply. The first is
expedience—to complete the work as quickly and ef-
ficiently as possible to meet deadlines and minimize
cost. The second is rigour—to scrupulously apply sta-
tistical methods and experimental controls to ensure

that all comparisons and estimates are statistically
valid and free of bias and confounding factors.

The values of expedience and rigour usually con-
flict. However, both are important. In dynamic
natural systems such as forests, many effects of events
(such as particular logging practices or forest fires)
take many years to manifest themselves. Studies have
limited time and resources. In the real world, statis-
tics involves art as well as science. To provide valid
and accurate results, technical considerations such as
experimental or survey design, sample size and allo-
cation, and the desired accuracy or precision of the
results are necessary. However, with limited re-
sources, these requirements must be balanced with
constraints such as the ability to execute the field
procedures, weather, training and management of
participants and field personnel, financial resources,
and time available to gather and analyze the data.

This chapter discusses some compromises that
attempt to satisfy both values. As with any compro-
mise, sometimes it provides excellent results, at other
times it is the best of a difficult situation, and occa-
sionally it is unworkable.

Nemec (this volume, Chap. 2) discusses designed
experiments, those where the experimenter assigns
treatments and can manipulate the experimental fac-
tors at will. Schwarz (this volume, Chap. 3) discusses
the study of uncontrolled events, those where the ex-
perimenter has a very limited ability to manipulate
the experimental factors, and methods for improving
the information that can be gained from them. How-
ever, what happens when the results of the studies
will not be available for a long time, or where it is un-
realistic or unacceptable to implement past practices
that have been condemned? An example might be
a study of the effect of large-scale clearcutting. How
can we use data that already exist and what are the
advantages and pitfalls?

4.2 Definitions

All studies that involve the gathering and synthesis of
data can be placed in one of two categories, depend-
ing on the nature of the design, the data, and the
analysis. The first category is called a prospective
study. This term, which has been used extensively in
biostatistical literature relating to medical science
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(Bailar and Mosteller 1986; Rosner 1986), indicates
that the data are collected and analyzed without ref-
erence to past data or circumstances.

A prospective study may be either designed as de-
scribed in Chap. 2 or uncontrolled (see Chap. 3). The
second category is called a retrospective study. In this
type of study, data that have already been collected
for other purposes, or that are of useful historical
circumstances, are used directly.

To clarify this point, let us refer to the following
definitions from Rosner (1986, p. 326). Although
these definitions relate specifically to medical science,
the underlying ideas are directly applicable to
forestry.

Definition 10.4: A prospective study is a study in
which we identify a group of disease-free individ-
uals at one point in time and follow them over a
period of time until some of them develop the
disease. We then try to relate the development of
disease over time to other variables measured at
baseline.

Definition 10.5: A retrospective study is a study in
which we initially identify two groups of individ-
uals: (1) a group that has the disease under study
(the cases) and (2) a group that does not have the
disease under study (the controls). We then try to
relate their prior health habits to their current
disease status.

Although not from forestry, these definitions em-
phasize conceptual differences between the two
approaches for designing a study. In the prospective
case, all of the data collection and design of the study
are based on events that happen after the inception
of the study. In the previous definitions, we start out
with similar subjects and then observe what happens.
Subjects will be divided into categories based on
factors that are suspected to be related to the devel-
opment of the disease. The researcher will then try to
relate the development of the disease to various char-
acteristics and behaviours of the individuals.

In the retrospective case, data that are already
available, or are of circumstances or events that have
already happened before the study is initiated, are
used extensively. In the previous definitions, we start
out with two different groups of subjects—one with
the disease, the other without—and then work back-
wards to determine relationships between the
acquisition of the disease and the characteristics and

behaviours of individuals. The References section
contains many references to the statistical treatment
of data in particular instances. Most of the statistical
literature relates to the medical field (e.g., Bailar and
Mosteller 1986; Greenberg 1988; Hoogstraten and
Koele 1988; Koele and Hoogstraten 1988; Sikkel 1990;
Weinberg et al. 1993).

The distinction between prospective and retro-
spective is significant, as it represents a great differ-
ence in the measure of control over the study’s design
and execution. Note that this method of categorizing
studies does not refer to particular statistical or sur-
vey methodologies.

If all things were equal, the obvious choice would
be a prospective approach because it provides more
control over the design and implementation of the
study. A prospective study offers the option to deter-
mine exactly what data to obtain, to determine the
survey techniques or the design of the experiment,
and, in some cases, to exercise control over the types
of treatments and their assignment to sampling units.

However, all things are not equal. The use of prior
knowledge or taking advantage of existing results is
critical in forest management for many reasons. First,
enormous savings of time, labour, and financial re-
sources can be realized if data or results from prior
studies or surveys are used. Second, in some in-
stances it may be impossible to re-create the exact
circumstance that occurred at some previous time or
in another location. Third, social and political pres-
sures may prevent the execution of treatments that
would likely have significant negative impacts on an
ecosystem or community. Retrospective analysis is
especially useful in planning and designing future
studies. For example, prior studies can help in esti-
mating sample sizes, determining statistical power
(Anderson, this volume, Chap. 6) or estimating prior
probabilities in a Bayesian analysis (Bergerud and
Reed, this volume, Chap. 7). Also, prior data can be
used to develop or refine hypotheses or provide in-
formation on the required time span of a prospective
study.

Another important consideration in the design of
a study is the fact that resource managers must make
decisions regularly. Because making decisions based
on some rather than no knowledge is better, retro-
spective analysis can be effectively used. A carefully
designed retrospective study can be accomplished
within a much shorter time frame than a prospective
one. The researcher may have less freedom to control
the design, but this shortcoming is offset by the
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requirement for fewer resources and the availability
of other sources of knowledge and data. Thus, an-
swers can be obtained quickly from a retrospective
analysis, whereas a prospective study might not be
completed before a decision must be made.

4.3 Examples

To further illustrate the concepts mentioned in the
previous sections, let us consider the following
examples.

4.3.1 Example A: effect of landslides on water
quality

To assess the impact of major natural disturbances
such as landslides on water quality, it would be so-
cially unacceptable to create such events. An alterna-
tive is to consider areas where these events have
already occurred. Furthermore, significant time, ef-
fort, and money are saved by using data from previ-
ous natural disasters to compare or observe trends
rather than waiting for future events to occur. This
analysis would be termed retrospective since the data
collected will be gathered from events that have al-
ready transpired.

This application fits the definition for a retrospec-
tive study given in Section 4.2. Let us compare this
example with the definition point by point. In the ex-
ample, we identify two types of areas (corresponding
to groups of individuals in the medical definition): in
one area landslides have already occurred (cases), in
the other they have not (controls). We then relate the
water quality (prior habits) to the current status of
the area. The experimental design will not be as rig-
orous as for a prospective study because the sampling
will be opportunistic rather than being based on a sta-
tistically rigorous design. To compare the water
quality in slide and non-slide areas, it would be ideal
to compare areas that were identical in all respects
except for the fact that a slide occurred in one and
not the other. If this comparison were achievable,
then any difference in water quality would be due
solely to the slide. However, this comparison will
generally not be possible, and hence the analysis and
interpretation of the data will need to take this into
account.

4.3.2 Example B: forest bird populations
Retrospective analysis is extremely useful in the study
of long-term trends. Consider, for example, a study
of the long-term effects of clearcutting on forest bird

populations. A prospective approach would consist
of clearcutting several areas according to a specific
design in which natural factors, which affect the
regeneration and stand development, can be con-
trolled. The next step would involve collecting data
on these areas for the next, say 8o years. Since man-
agers would likely have to make a decision before the
results from this study are available, the disadvantage
is obvious. Retrospective analysis can help the man-
ager by providing timely information.

An alternative to the prospective approach is to
consider areas that have been clearcut in the past.
Bird populations can be assessed at various stages of
regeneration after clearcutting. This method is a ret-
rospective study because advantage is being taken of
circumstances that serve as proxies (alternatives) for
treatments (in this case, areas that have been clear-
cut previously). This approach greatly decreases the
duration of the study. As in the previous example, a
compromise must be made in the experimental de-
sign because the sampling will be opportunistic and
natural factors such as those previously mentioned
would not be controllable to the same degree as in a
prospective study.

4.3.3 Example C: economic effect of forest fires
Often starting a study from scratch is difficult. For
example, past studies have determined the extent to
which long-run timber supply and the flow of eco-
nomic benefits from a forest can be reduced by fire.
To assess the costs and benefits of a fire protection
program, the probability of destructive fires must be
estimated (Reed 1995) in one of two ways. First, ret-
rospective analysis of historical fire data could be
undertaken. The second option, a prospective analy-
sis involving the selection of several areas based on a
suitable sampling plan, would involve, according to
plan, setting fires in some of the areas, and leaving
others undisturbed. The resulting economic effects in
the burned areas could be compared to those in areas
that were not set ablaze. While this second option is
an interesting design, and from a purely statistical
point of view has many advantages, it is socially un-
acceptable. Furthermore, this study would clearly be
very long and highly impractical.

4.3.4 Example D: effect of herbicides

The provision of information to direct future studies
is an important contribution of retrospective analy-
sis. In 1991, a study investigated the impacts of
herbicides on grizzly bear forage production in the
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Coastal Western Hemlock zone (Hamilton et al.
1991). Retrospective analysis of past herbicides treat-
ments provided information on the relationship
between stand structure, density, and forage avail-
ability in glyphosate-treated stands. This information
was used to guide the range of treatments to use for
further investigation and testing.

4.3.5 Example E: preservation of biodiversity

The idea that green tree retention mimics the stand
structure remaining after natural disturbances such
as fires is an important assumption that currently
guides much of the management for biodiversity
(B.C. Ministry of Forests and B.C. Environment
1995). An example of this principle is found in Traut
(1995). He studied the preservation of biodiversity in
green tree retention—a logging practice where some
large trees are left uncut in each cutting unit—by ex-
amining areas that had been ravaged by fire. The
effects of fire were assumed to be analogous to the
effect of green tree retention, because several trees
survive the fire as they would survive the logging.
Although fire and logging using green tree retention
are different, if they have similar effects on biodiver-
sity, effects can be studied that would not be possible
otherwise, except by waiting several decades.

Acker et al. (1995) did a similar study in the
Willamette National Forest, as did Zenner (1995) on
Douglas-fir and western hemlock in the Western
Central Oregon Cascades. Peck and McClune (1995)
did a similar study in western Oregon, but targeted
canopy lichen communities.

4.3.6 Example F1: site index versus tree density
Goudie (1996) presented a paper discussing the rela-
tionship between the site index and the tree density
in lodgepole pine stands. He postulates that increas-
ing density represses growth, and that to measure the
site index on dense stands underestimates the index.
It is often assumed that these two factors—density
and growth—are independent, thus challenging the
usefulness of thinning as a measure to promote
growth. The investigation of this phenomenon with
a prospective study would require a design in which
stands of various densities would be subjected to a
variety of thinning regimes, and the effect on the site
indices observed.

Goudie extensively used stands that had been
thinned in the past, sometimes by natural causes
such as fire. He takes great effort to ensure that
stands representing various tree densities are similar

in all respects except for site density so that a differ-
ence in site index can be directly attributable to the
density. He correctly points out the potential biases
in the selection of plots, and although the design has
some shortcomings, he finds compelling evidence to
suggest a density-dependent repression on site index.
The dependence was most noticeable in very dense
stands and hardly noticeable in stands of lower densi-
ty. Thus growth and yield models that do not take
repression into account would not be applicable to
very dense stands

Here is an example where existing data have been
used considerably. The results were presented along
with a discussion of the potential flaws and biases,
and a great deal of information and knowledge was
gained. Researchers would have had to wait years for
the results from a prospective study.

4.3.7 Example Fa2: site index versus tree density
Thrower (1992) also conducted a study at Larson’s
Bench, east of Chilliwack, B.C., on the relationship
between density and height-and-diameter growth in
coastal Douglas-fir stands. This study, too, tried to
mimic an experimental design by comparing a natur-
al (unspaced) and a previously logged (spaced) area,
each with several similar ecological units. This study
used an existing thinning, which was not designed for
a research study. Some matching of units was possi-
ble. However, since the two areas did not have the
same conditions at the time of thinning, it was ac-
knowledged that the comparison of the growth rates
in the two areas may be a combination of growth rate
and initial conditions.

4.4 Contrasting Data Collected from Prospective
and Retrospective Studies

Data collected from a prospective study can be used
and analyzed directly, and the interpretation can be
based on sound statistical design and analysis. By
contrast, data from a retrospective study have fewer
statistical controls, and often some components can-
not be combined with other components of the data
unless additional assumptions are made about their
comparability.

Consider Example B (forest bird populations) in
the previous section. For a prospective study, the same
treatments would be used throughout 8o years of the
study. The analysis of trends for various species is rel-
atively straightforward. In the retrospective study
there may be a variety of stands where clearcutting
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was done at various times in the past. The choice of
stands will be limited and comparisons may have to
be made among stands that differ not only in the
time since being clearcut, but also in other variables
such as weather, initial stand structure, slope, aspect,
and elevation (which cannot be controlled).

In a retrospective analysis, stands must be matched
as closely as possible (i.e., choose stands for compari-
son that are as similar as possible in all ways except
for the time since the clearcut). If we can achieve this,
then the difference in the populations will be due to
clearcutting and not to other factors. Lack of match-
ing requires making additional assumptions about
the comparability of the stands included in the analy-
sis. For example, you might assume that for different
areas, the weather conditions since the clearcutting
will have affected all the clearcuts in the same way.
Before making this assumption, a study of each area
would be advisable to assess the assumption’s plausi-
bility. Thus the lower cost and shorter time of the
study are somewhat offset by a design with fewer
controls. Because of the greater use of untested as-
sumptions, the interpretation of the results will
demand greater caution than in a prospective study.
For example, in many instances, results cannot be
generalized, nor hypotheses tested. However, hy-
potheses can usually be generated for future studies.

Retrospective analysis offers other benefits over
long-term experiments. In Example B (forest bird
populations), a prospective experiment has the risk
that some of the treatment areas may eventually be
used for purposes other than forests (e.g., become
agricultural land or urban areas) during the course of
the experiment. Hence the treatment areas are lost to
the final analysis. This risk is present even in studies
that last for considerably shorter periods of time.

4.5 Comparing the Development of a Retrospective
and Prospective Study

A comparison of the development of prospective and
retrospective studies, especially where they differ, will
help us to appreciate how to use retrospective analy-
sis effectively. Figure 4.1 outlines the basic steps in-
volved in the development of the two types of studies.

The left side of Figure 4.1 follows the steps in a ret-
rospective study, while the right side displays the
steps in a prospective study. In a retrospective study,
several steps replace the experimental design stage in
a prospective study. Comparable data sources must
be found that replace rigorous statistical and field

procedures. Any difficulty in finding truly compara-
ble data sources inhibits a rigorous statistical design.
The lack of control in the retrospective study means
that additional assumptions will be required to
perform the analysis, implying that more care is
needed in the interpretation of the results. For exam-
ple, if in Example B (forest bird populations) we
were unable to match clearcut and natural stands, we
may find it necessary to compare a clearcut stand
with a natural one that has a different aspect and tree
species mix. We would assume that these factors in
the two stands do not make a difference to the
species present.

In Example F2 (site index versus tree density) the
comparability of thinned and unthinned stands was
somewhat compromised because of differences in the
conditions of the stands at the time of clearcutting.
Consequently, the results may be less widely applica-
ble. The advantages, however, are the potential to
greatly shorten the study’s time frame, and to reduce
the effort and resources required.

The previous comments do not imply that retro-
spective analyses are inadequate, but do indicate the
importance of additional diligence during their de-
sign, interpretation, and analysis. Furthermore, the
study of alternative data sources greatly enhances the
ability to design an efficient study using knowledge
already gained about the subject under investigation.
This study may lead to rejecting some scenarios or
considering others that might not otherwise be
obvious. Also, retrospective data provide advance
warnings of difficulties one might expect, which
could lead to the failure of an experimental design. A
retrospective study can often be used as a pilot study
to obtain qualitative information.

4.6. Studies with Significant Retrospective and
Prospective Components

Sometimes it is not clear whether to classify a study
as prospective or retrospective. The study may ap-
pear to be a prospective study, but after scrutiny may
be found to be more like a retrospective one. Think-
ing about which category the study belongs to will
help us understand how the assumptions might affect
the interpretation of results. The following examples
illustrate this point.

4.6.1 Example G: change in the measuring instru-
ment
Consider the case where a questionnaire survey of
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hunters has been done for many years, yielding infor-
mation about hunter activity, number of animals or
birds killed, etc. With advancing technology and
more knowledge of the resource, the survey is
redesigned, new computer technology is used, the
questions are clearer, and perhaps one or two are
added or deleted. The same series of statistics is gen-
erated before and after the redesign.

Now suppose that later a trend analysis of the
number of days hunted and the number of birds of
various species killed is required over a time period
that spans both the old and the new methodology.
Because the same series of statistics has been generat-
ed throughout the period covered by the study, the
researcher might infer that it would be valid simply
to use the data without further consideration. How-
ever, changes in the way a question is asked or in the
way the questions are edited may influence a person’s
response and therefore an apparent trend may be due
to the question rather than the activity. Any analysis
would require assumptions about the comparability
of the data. The interpretation of the results would
need to acknowledge these assumptions and examine
their potential implication. Cooch et al. (1978) de-
scribe some of the effects of survey changes on results

TABLE 4.1 /A ratio by colony 1990-1995

in the Canadian Wildlife Service’s National Water-
fowl Hunter Surveys.

4.6.2 Example H: changing statistical methodology
Consider the following simplified example. Suppose
that for a number of years the ratio of immature to
adult Ancient Murrelets (Synthliboramphus antiqu-
us), called the I/A ratio, has been collected for a
specific population consisting of five colonies. This
ratio is of interest because the higher it is, the greater
the number of young per nest. This is one measure of
the health of the population. These birds are colonial
(i.e., nest close together in small areas or colonies).
Each year a sample of approximately 20 nests is ob-
served from each of five colonies under study, and
the number of adults and young are counted. The
overall I/A ratio was computed by simply averaging
the ratios from the five colonies (Table 4.1).

In 1996, the size (i.e., the total number of nests) of
each colony, in addition to the number of immatures
and adults in the observed nests, is recorded. The
results are given in Table 4.2.

As in previous years the comparable I/A ratio can
be computed as the simple average of the I/A ratios
for the five colonies. Its value is 1.07.

I/A ratio by colony Average
Year A B C D E I/A ratio
1990 0.83 1.10 0.90 1.12 1.35 1.06
1991 0.90 1.02 0.84 1.25 1.41 1.08
1992 0.95 0.97 0.88 1.12 1.22 1.03
1993 0.92 1.03 0.81 1.17 1.27 1.04
1994 0.85 0.93 0.78 1.08 1.19 0.97
1995 0.96 1.05 0.91 1.20 1.36 1.10
TABLE 4.2 I/A ratios for 1996
Colony A B C D E Total
Nests observed 20 20 18 17 20 95
Immatures 29 39 34 39 63 148
Adults 40 40 36 34 40 190
I/A ratio 0.73 0.98 0.94 1.15 1.58
Colony size 58 75 105 178 285 701
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In 1996, with the information about colony size
being added, the I/A ratio can be weighted by the size
of the colony. The I/A ratio calculated in this way will
be 1.24. In this estimation procedure, the counts are
weighted within each colony, which tends to reduce
the bias. Furthermore, the I/A ratios are examined as
a function of colony size (Figure 4.2).

Subject to confirmation by a statistical test,

Figure 4.2 seems to indicate that larger colonies are
more productive. The difference between the two es-
timates of the overall I/A ratio arises because the
larger colonies tend to have higher I/A ratios and, in
the second estimate, the colonies influence the esti-
mate in proportion to their size.

For management purposes, the “health” of the
population in the five colonies is needed. Should the
lower figure (I/A=1.07) be presented because it pro-
vides the best comparison with information from
previous years? Or should the higher figure (I/A=1.24),
which will be less biased and a better estimate, be used?

Alternatively, the analysis from previous years
could be redone by weighting the results prior to
1996 by the 1996 colony sizes. If colony sizes do not
vary a great deal from one year to the next, this
method may be a good way to compare as well as up-
date the results from previous years. The downside to
this procedure is that if colony sizes fluctuate consid-
erably over time, poorer estimates may result.
Furthermore, the agency may present an image of in-
competence by not presenting a coherent
methodology.

Several solutions may be “correct.” The choice will
depend on the priorities of the agency and the pro-
posed use of the information obtained. If the data are
used as input to a mathematical model, using the best
information available would be the highest priority;
it may be essential to adjust previous years’ informa-
tion if there is reason to believe this is better. On the

other hand, if trends over time are desired, then
consistency is important, even at the expense of a sys-
tematic bias in each year’s results.

The previous two examples represent cases in a
continuing study. The researcher has introduced the
change in the circumstance through a change in
methodology. Often, these cases might not be con-
sidered retrospective but simply studies with
statistical bias. However, the same factors that exist
in Examples A through F, exist here. We are using
previously collected data that are not entirely com-
patible with data we currently collect. The same
caveats exist here as in the previous examples. In this
sense, Example H is similar to a retrospective study.

The following example demonstrates that a study
designed as a prospective one often has elements of a
retrospective nature. The existence of such elements
should not necessarily result in a study being classi-
fied as retrospective. Many studies, of necessity, con-
tain some retrospective and some prospective
elements. This happens because we often have limit-
ed control over the data we collect. Hence many
studies are hybrids and it is an oversimplification to
classify every study as either purely prospective or
purely retrospective. Consider the following example
from wildlife conservation.

4.6.3 Example I: Pacific Brant

Each year, Pacific Brant (Branta bernicla) migrate
north in the spring and early summer and south in
the autumn. During the northward migration, one of
the major stopping areas is the Parksville-Qualicum
area on the eastern shore of Vancouver Island. The
birds stay there for anywhere from several hours to
over 10 days before moving on. Proper conservation
and management of the Pacific Brant requires
knowledge of how many brant use this area, and for
how long.

A solution is to count the number of brant in the
area, which seems easy because the vast majority feed
on the beaches along the seashore. For counts, where,
how often, and what data to collect must be deter-
mined.

If counts are done at any regular intervals (e.g.,
daily) then those birds that stay several days may be
counted more than once. Furthermore, brant that
stay for a shorter time than this interval may be
missed altogether. Certainly both situations cannot
be accommodated unless other data are used.
Multiple counts can be accounted for through the
observation of banded birds since the unique band
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number provides a method for identifying individual
birds. This method can work quite well, but simplify-
ing assumptions are necessary. First, assumptions
would be required for any prospective banding study,
such as the randomness of the banded birds among
the population as a whole, and the likelihood of see-
ing a banded bird (e.g., the band may be hidden if the
bird is swimming, or its identification number may
not be readable by the observer).

Banding will be expensive unless brant that have
already been banded in previous studies can be used.
The incorporation of bands from elsewhere intro-
duces a retrospective component into the study and
the requirement for additional assumptions. We
must consider where the brant were banded. Were
brant from some wintering areas subjected to more
intensive banding efforts than those from others?
Even if we can answer this question, we need to know
how many brant from various wintering areas pass
through Parksville-Qualicum. Some components of
the population may have a high proportion of band-
ed birds, and others may have none. It may be neces-
sary to make some simplifying assumptions about
this source of data as well as an assessment of its
validity.

The decisions relating to these issues will result in
a compromise between optimum statistical methods,
which may be impossible to implement, and allowing
less desirable retrospective components. The addi-
tional assumptions under which the analysis was
done should be stated clearly. More information
about the Pacific Brant is given in Campbell et al.
(1990a), and estimation procedures in Routledge et

al. (1998).
4.7 Guidelines for Designing Retrospective Studies

Several examples of retrospective studies, along with
some weaknesses and strengths, have been discussed.
As practitioners and decision-makers, we need guid-
ance concerning the factors that distinguish a good
retrospective study from a mediocre one. Although
retrospective and prospective designs and analyses
have basic differences, we should endeavour to apply
sound statistical principles to both. The main differ-
ence is the rigour with which these principles can be
applied to each, and to what extent compromises
must be made. The following list provides some prin-
ciples for good design. Although not exhaustive, this
list focuses on several points where retrospective and
prospective studies tend to differ.

+ Probability sampling

+ Awareness and clear statement of assumptions

+ Design considerations—controlling variation

+ Use of direct measurements rather than proxies for
the measurements

Let us look at these four principles and consider
how we might adhere to these in both retrospective
and prospective analyses.

4.7.1 Probability sampling
Probability sampling introduces an element of ran-
domness into the process of selecting the sampling
units. As pointed out by Schwarz (this volume,
Chap. 3) randomness is essential to virtually all statis-
tical methods. It serves to remove many inadvertent
biases and is central to the strict application of statis-
tical theory to experimental design (Nemec, this
volume, Chap. 2) and to the proper assessment of in-
ference (Anderson, this volume, Chap. 6).
Probability sampling is often difficult in a
prospective study, and is even more arduous in a ret-
rospective one. Consider Example A (effect of
landslides on water quality). If we use past data, we
have limited choices for our sampling units. For ex-
ample, to estimate the water quality (chemical
composition and concentration of various impurities
in the water) 10 years after a landslide, we are limited
to the areas where slides have actually occurred and
are of the appropriate age. These may not necessarily
be representative of the region in which we are inter-
ested. For example, if most of the slides were at lower
elevations, or in a particular valley, then the data
from individual slides may have to be weighted to
compensate for their geographical distribution, or a
non-random sample be chosen that will have a more
representative geographic distribution. This last pro-
cedure violates the concept of probability sampling
but may represent its best approximation using limit-
ed past data.

4.7.2 Awareness and clear statement of assump-
tions
Often assumptions must be made that are clearly not
true, but the consequences of which are hopefully
minimal. Consider Example I (Pacific Brant). A ret-
rospective component to this study is the use of
bands that were affixed to birds elsewhere.

To simplify the discussion, assume that the brant
came from two wintering areas, area X in which a
large proportion of brant had been banded, and area
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Y in which only a few had been banded. The average
length of stay of the brant in Parksville-Qualicum
(the first step for estimating the total population
passing through the area) can be obtained from re-
peated band sightings. However, if brant from
wintering area X tend to spend more time in the area,
our estimate of length of stay will be too high since a
disproportionate number of birds seen with bands
are from area X. Unless we have detailed banding in-
formation and know the proportion of birds from
each wintering area, we can do little about this source
of error except to assume that the length of stay for
the X and Y birds is the same, acknowledge the po-
tential bias, and assess its possible effects on the
estimates.

4.7.3 Design considerations—controlling variation
In any study, it is essential to reduce unwanted varia-
tion as much as possible. The more we succeed in
doing this, the better we can succeed in establishing
relationships among variables, testing hypotheses, or
obtaining precise point estimates.

In Example F1 (site index versus tree density),
Goudie (1996) recognized that stands on which site
index were compared must be as similar as possible,
leaving tree density as the only variable. His success
in determining a valid relationship between site index
and tree density depended upon his success in find-
ing nearly identical sites except for the density.
Because he did a retrospective study, the job is more
difficult—there are fewer stands to choose from. In
a prospective study he would have a much larger
choice of sampling units—a comprehensive sampling
universe from which to sample.

4.7.4 Use of direct measurements rather than prox-
ies for the measurements

Sometimes there are insufficient sampling units with
the properties we want to study. In Example E
(preservation of biodiversity), this was the case. An
assumption was made that a burnt stand with trees
left after a fire is equivalent to a logged stand with
green tree retention. This assumption allowed a
greater choice of stands and thus the potential for
better control in the design. However, in doing this,
the burnt areas are a proxy for green tree retention.
The cost of greater control is the assumption of simi-
larity between burnt and green tree retention stands.

4.8 Roles of Retrospective Analysis in Adaptive
Management

Adaptive management is a systematic approach to
improving managerial techniques through learning
from the outcomes of interventions by those in-
volved with the administration of the resource. This
definition implies designing interventions and moni-
toring programs to provide reliable feedback
concerning the outcomes and their causes. Managers
need all the tools available to properly manage forest
resources, and must be flexible and able to adapt to
quickly changing conditions and priorities.

Retrospective analysis can be used to provide input
in five important ways:

1. Assessing long-term management actions with-
out waiting until the effect of the action is
realized. In Example B (forest bird populations),
assessing long-term trends in bird populations
after clearcutting would require many years. Ob-
serving the effect on already clearcut stands can
provide useful and expedient information.

2. Assessing impacts of natural phenomena that
cannot be created for the purpose of a study.
Consider Example A (effects of landslides). Land-
slides are rarely produced on purpose. In cases
such as in road construction in mountainous ter-
rain where some slides may be created through
blasting, landslides would likely not provide useful
information for a study of water quality. A more
representative sample could be obtained from nat-
ural slides.

3. Studying historical patterns of events such as dis-
turbance by fire, fluctuations in weather, or
outbreaks of parasites such as the gypsy moth.
The study in Example C (economic effect of forest
fires) looks at previous patterns of fire and uses
these data to assess the economic impacts of the
fires. This study also would fit in category 2, above,
since fires would not be set simply for estimating
impacts, economic or otherwise. Controlled burns
for preventing larger fires in the future would not
suffice for this type of analysis because they would
not furnish a suitable sample for assessing the im-
pacts of large devastating fires.

4. Collecting background information to aid in the
design of a related study. Example D (effect of
herbicides) demonstrates a retrospective study that
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was performed to take advantage of existing data
to aid in the planning of a more suitable study that
will have more focused objectives.

5. Providing interim information for making deci-
sions when results from long-term studies will
not be available until after the intended deadline
has passed. The studies in Example E (preserva-
tion of biodiversity) yield considerable informa-
tion on the relationship between biodiversity and
certain logging practices. This information would
take many years to collect and would be difficult to
implement as a prospective study. Example F1 (site
index versus tree density) falls into this category
too. A prospective study would take years to com-
plete as the database would build very slowly.

In discussing the role of retrospective studies in
adaptive management, their relationship to prospec-
tive studies must be considered. In the following
discussion, the two methods will be compared and
contrasted.

Each of the five ways of using retrospective analysis
listed previously can be broken into two compo-
nents:

1. Feedback for management. The opportunity to
obtain information for improving current man-
agement practices often exists. Regular feedback
should not be restricted to retrospective studies.
As prospective studies progress, they offer greater
potential for feedback, but results typically take a
longer time. Wherever possible, prospective
studies should report interim results. If this infor-
mation is prepared with the proper interpretation,
the manager will be aware of current ideas, and re-
alize that they are subject to change as more
information becomes available. We should not be
reluctant to assess the most current knowledge and
use it to modify management practices.

2. Feedback for understanding. This is just as im-
portant as feedback for management. In addition to
knowing that a particular course of action works,
we need to understand why it works. What are the
underlying natural processes and relationships that
cause the results we observe? It is only when we
answer these types of questions that we can gener-
alize our ideas and progress. This type of feedback
will be assimilated into the knowledge base for the
resource, and while it may not be useful for cur-
rent decisions, it will become useful in the future
when combined with other information.

Feedback for understanding has two components.
The first is direct input to the knowledge base.
Prospective studies are the best way to achieve this as
they are carefully controlled, and statistical accuracy
is more important than short execution time. The
second component is the provision of direction for
future studies. This can often be accomplished by a
retrospective study since only general directions are
required, and time need not be spent obtaining rigor-
ous results.

4.9 Conclusions

Retrospective analysis is an essential tool for research
and management. It allows the researcher to augment
and design studies by relying on previous data or cir-
cumstances. Its advantages include great savings of
time and resources since much work has already been
done. In most instances, forest managers cannot af-
ford to wait a long time for results from ideal studies,
and often cannot afford to do ideal studies at all. The
strength of retrospective analysis lies in its ability to
provide an alternative to a purely prospective ap-
proach by combining historical data with current
information for the production of interim results.

Retrospective analysis is an important predictor
for the future. Even though quantitative probabilities
(P-values) cannot always be attached to hypotheses, a
qualitative understanding of processes or estimation
of parameters can be obtained. This knowledge can
provide valuable background information and will,
at the very least, provide information for future re-
search.

Finally, we should not depend entirely on retro-
spective studies. Because of their inherent
weaknesses, their long-term importance lies in pro-
viding information concerning future management
and research directions, and pointing out where
more detailed prospective studies are necessary. At
some point we need a quantitative verification of hy-
potheses with statistically sound results. Where
possible, we must ultimately supplement retrospec-
tive studies with prospective ones.

Difficult management decisions of today based on
sparse information should become routine decisions
tomorrow based on solid information. This transi-
tion is ongoing, because with each puzzle we solve, a
new one seems to be waiting. Retrospective analysis
can be applied to timely but tentative results, fol-
lowed by primarily prospective studies, and then to
thorough investigation of a phenomenon. Our activi-
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ties must be divided between “fighting fires” and
planning for the future in areas not yet under threat.
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5 MEASUREMENTS AND ESTIMATES

RICHARD D. ROUTLEDGE

Abstract

Measurements and estimates are never perfect. The
potential for error is always present, especially in field
studies on large ecosystems such as British Columbia’s
forests. In the past, inattention to measurement errors
has led to serious management failures, most notably
in the related field of fisheries management. This
chapter describes fundamental measurement con-
cepts, ways to assess and reduce the potential size of
measurement errors, and ways to adjust subsequent
analyses and associated management actions to ac-
count for these errors.

5.1 Introduction

Do any of these statements describe your views?

It is a waste of time to worry about measurement
errors. I have enough practice in my field to have
reduced measurement errors to a negligible size.

If I know that my measurements are not perfect,
then I should take several, and average them,
maybe throwing out the odd one that is far from
the others.

I have the resources only to make a subjective guess
at the abundance of some minor species. Surely this
will be adequate. After all, I am only looking for
trends. If the measurement errors are large, and are
consistently present, can’t we ignore them when we
are looking for trends?

I don’t have to worry about measurement errors.
always take repeated observations and use standard
statistical techniques to deal with them. If my mea-
surements do contain large errors, then can’t I just
take repeated measurements, do a routine statistical
analysis, and quote a P-value to silence the pesky
biometricians?

I have an important job to do. I don’t have the time
or luxury of worrying about statistical niceties like
academics and scientists. I need to get on with
managing for forest production.

If you agree with any of these opinions, then you
may find this chapter unsettling.

Adaptive management is a methodology for pro-
ducing information on the consequences of different
management practices. These consequences must
eventually be measured, and hence measurement is a
key part of any adaptive management project. In gen-
eral forest management, measurements are taken to
evaluate outcomes of management actions, assess
trends, and evaluate current states of forest ecosys-
tems. This chapter focuses on measurements of
natural resources, such as timber volumes, fish
population parameters, or species diversity of com-
munities affected by forest management. The types of
measurements that are considered range from count-
ing, to direct physical measurements, to educated
guesses.

Careful attention to measurement errors is an es-
sential component of a successful forest management
project. In field work, we often deal with quantities
that are difficult to measure, and the errors in these
measurements are often large. It is tempting to ig-
nore these errors, and manage as though the
estimates reflect the true state of the resource. This
temptation m